DEPARTMENT OF NAVAL SCIENCES HELLENIC NAVAL ACADEMY

A POSSIBILITY FOR ON-BOARD TRAINING FOR MARINE GAS TURBINE PERFORMANCE MONITORING AND DIAGNOSTICS

K. Mathioudakis¹, N. Aretakis¹, E. A. Yfantis²

¹Laboratory of Thermal Turbomachines National Technical University of Athens ²Department of Naval Sciences Hellenic Naval Academy

A POSSIBILITY FOR ON-BOARD TRAINING FOR MARINE GAS TURBINE PERFORMANCE MONITORING AND DIAGNOSTICS

Computer models and gas turbine performance training.

 The principles of gas turbine engine condition assessment and fault diagnosis.

The visual interface of a model.

•A computer model for performance simulation and diagnostics.

Basics of gas turbine engine operation

> Understanding the effects of malfunctions

•Further training aspects-conclusions

Computer models and gas turbine performance training

Provide a means for effectively training

> Demonstrate behavior of complicated systems

> Effective use of training time

Cover an extended range of operating conditions

Provide values of physical quantities hard or impossible to observe physically

Abnormal operation can be studied at no cost

Computer models and gas turbine performance training.

•The principles of gas turbine engine condition assessment and fault diagnosis.

The visual interface of a model.

•A computer model for performance simulation and diagnostics.

Basics of gas turbine engine operation

> Understanding the effects of malfunctions

•Further training aspects-conclusions

The principles of gas turbine engine condition assessment and fault diagnosis (1)

Schematic representation of the gas turbine process

The gas turbine as an input-output system, for monitoring-diagnostic purposes

The principles of gas turbine engine condition assessment and fault diagnosis (4)

The process of gas turbine engine condition diagnosis

Principles:

≻Define "healthy" and "faulty conditions"

Specify observed variables and observable parameters

Establish interrelation of condition and variables of parameters

Computer models and gas turbine performance training.

The principles of gas turbine engine condition assessment and fault diagnosis.

The visual interface of a model.

•A computer model for performance simulation and diagnostics.

Basics of gas turbine engine operation

> Understanding the effects of malfunctions

•Further training aspects-conclusions

The visual interface of a model

Computer models and gas turbine performance training.

The principles of gas turbine engine condition assessment and fault diagnosis.

The visual interface of a model.

A computer model for performance simulation and diagnostics.
 > Basics of gas turbine engine operation

> Understanding the effects of malfunctions

•Further training aspects-conclusions

Basics of gas turbine engine operation (1)

Input for operational parameters

Basics of gas turbine engine operation (2)

Display of performance variables and parameters on an engine cut-out

Basics of gas turbine engine operation (3)

Interrelation of performance parameters

Output power versus ambient temperature for constant turbine inlet temperature (TIT)

Basics of gas turbine engine operation (4)

Operating points on compressor maps for twin spool marine gas turbine: a range of power outputs.

A POSSIBILITY FOR ON-BOARD TRAINING FOR MARINE GAS TURBINE PERFORMANCE MONITORING AND DIAGNOSTICS

Basics of gas turbine engine operation (5)

Operating points on turbine maps for twin spool marine gas turbine: a range of power outputs.

A POSSIBILITY FOR ON-BOARD TRAINING FOR MARINE GAS TURBINE PERFORMANCE MONITORING AND DIAGNOSTICS

Basics of gas turbine engine operation (6)

Operating line on compressor map for steady and transient operation

- **Computer models and gas turbine performance training.**
- The principles of gas turbine engine condition assessment and fault diagnosis.
- **The visual interface of a model.**
- A computer model for performance simulation and diagnostics.
 > Basics of gas turbine engine operation
 - > Understanding the effects of malfunctions
- **•**Further training aspects-conclusions

Understanding the effects of malfunctions (1)

Choice of main components condition parameters

Introducing diagnostic quantities

Modification Factors

$$MF = \frac{X}{X_{act}}$$

- -

Use them for

Simulating Faults

Diagnostic Faults

Understanding the effects of malfunctions (2)

Introducing Component Condition Parameters

Understanding the effects of malfunctions (3)

Modification of compressor performance map for a 3% reduction in flow capacity.

Understanding the effects of malfunctions (4)

Example of fault signature

- **Computer models and gas turbine performance training.**
- •The principles of gas turbine engine condition assessment and fault diagnosis.
- **The visual interface of a model.**
- **•**A computer model for performance simulation and diagnostics.
 - **Basics of gas turbine engine operation**
 - > Understanding the effects of malfunctions
- **•**Further training aspects-conclusions

Further Training Aspects

Self sufficiency of software

> Self understood interface

>Interactivity

≻on-line help

>batch processing

> exporting capability, interaction with other widespread tools

Address people of difference backgrounds

>Information provided is complete

Caracy sufficient for practiced use

Conclusion

Gas Turbine Computer Models Offer great possibilities for training on all aspects of Gas Turbine operation, with particular usefulness when referring to operation with altered (deteriorated, faulty, damaged) components.