FAULT DIAGNOSIS OF THERMAL TURBOMACHINES USING SUPPORT VECTOR MACHINES (SVM)

C. Kalathakis
Research Assistant

C. Romesis
Research Associate

N. Aretakis
Lecturer

K. Mathioudakis
Professor

Laboratory of Thermal Turbomachines
National Technical University of Athens
FAULT DIAGNOSIS OF THERMAL TURBOMACHINES USING SUPPORT VECTOR MACHINES (SVM)

- Description of the diagnostic problem

- Support Vector machines (SVM)
 - The mechanism behind
 - The general classification case

- Application on a Turbofan Engine
 - Aerothermodynamic benchmark fault cases
 - Sensor fault diagnosis

- Application on compressor faults
 - The radial compressor case
 - The axial compressor case

- Summary - Conclusions
FAULIT DIAGNOSIS OF THERMAL TURBOMACHINES USING SUPPORT VECTOR MACHINES (SVM)

- Description of the diagnostic problem

- Support Vector machines (SVM)
 - The mechanism behind
 - The general classification case

- Application on a Turbofan Engine
 - Aerothermodynamic benchmark fault cases
 - Sensor fault diagnosis

- Application on compressor faults
 - The radial compressor case
 - The axial compressor case

- Summary - Conclusions
Description of the diagnostic problem

\[u \text{ (operating point)} \rightarrow f \text{ (health condition)} \rightarrow Y \text{ (measurements)} \]

Engine faults (represented by a health parameters deviation), cause a corresponding measurement deviation.

Given a set of measurements the goal is to estimate the health parameters deviation due to fault.
Fault Diagnosis of Thermal Turbomachines using Support Vector Machines (SVM)

- Description of the diagnostic problem

- Support Vector machines (SVM)
 - The mechanism behind
 - The general classification case

- Application on a Turbofan Engine
 - Aerothermodynamic benchmark fault cases
 - Sensor fault diagnosis

- Application on compressor faults
 - The radial compressor case
 - The axial compressor case

- Summary - Conclusions
Support Vector Machines (SVM)

SVM is a supervised learning technique used for pattern classification

\[
\text{margin} = \frac{2}{||w||}
\]

\[
\varepsilon_1 : \quad w \cdot x + b = +1 \\
\varepsilon_2 : \quad w \cdot x + b = -1 \\
\varepsilon : \quad w^* \cdot x + b^* = 0
\]

All points satisfy:

\[
\begin{align*}
\tilde{w} \cdot \tilde{x} + b & \geq +1, \quad y = +1 \\
\tilde{w} \cdot \tilde{x} + b & \leq -1, \quad y = -1 \\
y_i (\tilde{w} \cdot \tilde{x}_i + b) - 1 & \geq 0, \quad \forall i
\end{align*}
\]

Linear SVM, with fully separable classes of 2D points
Support Vector Machines (SVM)

Quadratic Programming optimization problem

Laplace transform

Karush-Kuhn-Tucker (KKT) conditions

$$\max \left(\frac{2}{\| \vec{w} \|} \right) \rightarrow \min \left(\frac{1}{2} \| \vec{w} \|^2 \right)$$

$$y_i (\vec{w} \cdot \vec{x}_i + b) - 1 \geq 0, \ \forall i$$

$$\max : Ld = \sum_{i=1}^{l} a_i - \frac{1}{2} \sum_{i,j=1}^{l} a_i a_j y_i y_j x_i x_j$$

$$\sum_{i=1}^{l} a_i y_i = 0$$

$$a_i \geq 0$$
Support Vector Machines (SVM)
Pattern classification

Class y=+1

\[\mathbf{w} \cdot \mathbf{x} + b = 0 \]

Class y=-1

\[\mathbf{w}^* \cdot \mathbf{x} + b^* = \pm 1 \rightarrow b^* \]

\[\mathbf{w}^* = \sum_{i=1}^{l} a_i y_i \mathbf{x}_j \rightarrow \mathbf{w}^* \]

\[\mathbf{w}^* \cdot \mathbf{x}_i + b^* > 0 \Rightarrow \mathbf{x}_i \in y = +1 \]

\[\mathbf{w}^* \cdot \mathbf{x}_2 + b^* < 0 \Rightarrow \mathbf{x}_2 \in y = -1 \]
Support Vector Machines (SVM) – The general case

Non-linear SVM, with non-separable classes

\[
\begin{align*}
\text{max} : \quad & Ld = \sum_{i=1}^{l} a_i - \frac{1}{2} \sum_{i,j=1}^{l} a_i a_j y_i y_j \cdot K(x_i, x_j) \\
\sum_{i=1}^{l} a_i y_i &= 0 \\
0 \leq a_i &\leq C
\end{align*}
\]

Considered Kernel functions:

- **Linear kernel**
 \[K(x, y) = x \cdot y \]

- **Polynomial kernel**
 \[K(x, y) = (\text{gamma} \cdot (x \cdot y) + \text{coef})^{\text{degree}} \]

- **RBF kernel**
 \[K(x, y) = e^{-\text{gamma} \|x-y\|^2} \]

- **Sigmoid kernel**
 \[K(x, y) = \tanh(\text{gamma} \cdot (x \cdot y) - \text{coef}) \]
Support Vector Machines (SVM)
Multiclassification; the case of more classes involved

- One-against-all
- All-together
- One-against-one
- DAGSVM

Max-wins classification

<table>
<thead>
<tr>
<th></th>
<th>Class-1</th>
<th>Class-2</th>
<th>Class-3</th>
</tr>
</thead>
<tbody>
<tr>
<td>ε1-2</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>ε1-3</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>ε2-3</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>total</td>
<td>1</td>
<td>2</td>
<td>0</td>
</tr>
</tbody>
</table>
Overall diagnostic procedure

Filtered percentage deviations of available measurements form the input patterns
Description of the diagnostic problem

Support Vector machines (SVM)
- The mechanism behind
- The general classification case

Application on a Turbofan Engine
- Aerothermodynamic benchmark fault cases
- Sensor fault diagnosis

Application on compressor faults
- The radial compressor case
- The axial compressor case

Summary - Conclusions
Application on a Turbofan engine

Twin spool, high-by-Pass ratio, turbofan engine used as a test case
Application on a Turbofan engine

<table>
<thead>
<tr>
<th>no. of classes</th>
<th>parameter deviations</th>
<th>no. of classes</th>
<th>parameter deviations</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>$\Delta f_i = \alpha$, $\alpha \in [-2.5%, -2.0%]$, $f^i = A8IMP, SW_i, SE_i$, $i=12,2,26,41,49$</td>
<td>3</td>
<td>$(\Delta SW_i = \alpha, \Delta SE_i = -\alpha)$, $\alpha \in (1.0%, 1.5%)$, $i=26,41,49$</td>
</tr>
<tr>
<td>11</td>
<td>$\Delta f_i = \alpha$, $\alpha \in (-2.0%, -1.5%)$, $f^i = A8IMP, SW_i, SE_i$, $i=12,2,26,41,49$</td>
<td>3</td>
<td>$(\Delta SW_i = \alpha, \Delta SE_i = -\alpha)$, $\alpha \in (1.5%, 2.0%)$, $i=26,41,49$</td>
</tr>
<tr>
<td>11</td>
<td>$\Delta f_i = \alpha$, $\alpha \in (-1.5%, -1.0%)$, $f^i = A8IMP, SW_i, SE_i$, $i=12,2,26,41,49$</td>
<td>3</td>
<td>$(\Delta SW_i = \alpha, \Delta SE_i = -\alpha)$, $\alpha \in (2.0%, 2.5%)$, $i=26,41,49$</td>
</tr>
<tr>
<td>11</td>
<td>$\Delta f_i = \alpha$, $\alpha \in (-1.0%, -0.5%)$, $f^i = A8IMP, SW_i, SE_i$, $i=12,2,26,41,49$</td>
<td>3</td>
<td>$(\Delta SW_i = \alpha, \Delta SE_i = -\alpha/2)$, $\alpha \in [0.5%, 1.0%]$, $i=26,41,49$</td>
</tr>
<tr>
<td>4</td>
<td>$\Delta f_i = \alpha$, $\alpha \in [0.5%, 1.0%]$, $f^i = A8IMP, SW_i$, $i=26,41,49$</td>
<td>3</td>
<td>$(\Delta SW_i = \alpha, \Delta SE_i = -\alpha/2)$, $\alpha \in (1.0%, 1.5%)$, $i=26,41,49$</td>
</tr>
<tr>
<td>4</td>
<td>$\Delta f_i = \alpha$, $\alpha \in (1.0%, 1.5%)$, $f^i = A8IMP, SW_i$, $i=26,41,49$</td>
<td>3</td>
<td>$(\Delta SW_i = \alpha, \Delta SE_i = -\alpha/2)$, $\alpha \in (1.5%, 2.0%)$, $i=26,41,49$</td>
</tr>
<tr>
<td>4</td>
<td>$\Delta f_i = \alpha$, $\alpha \in (1.5%, 2.0%)$, $f^i = A8IMP, SW_i$, $i=26,41,49$</td>
<td>3</td>
<td>$(\Delta SW_i = \alpha, \Delta SE_i = -\alpha/2)$, $\alpha \in (2.0%, 2.5%)$, $i=26,41,49$</td>
</tr>
<tr>
<td>5</td>
<td>$(\Delta SW_i = \alpha, \Delta SE_i = \alpha)$, $\alpha \in [-2.5%, -2.0%]$</td>
<td>1</td>
<td>$(\Delta SW_12 = \alpha, \Delta SE_12 = \alpha, \Delta SW_2 = \alpha, \Delta SE_2 = \alpha)$, $\alpha \in [-2.5%, -2.0%]$</td>
</tr>
<tr>
<td>5</td>
<td>$(\Delta SW_i = \alpha, \Delta SE_i = \alpha)$, $\alpha \in [-2.0%, -1.5%]$</td>
<td>1</td>
<td>$(\Delta SW_12 = \alpha, \Delta SE_12 = \alpha, \Delta SW_2 = \alpha, \Delta SE_2 = \alpha)$, $\alpha \in [-2.0%, -1.5%]$</td>
</tr>
<tr>
<td>5</td>
<td>$(\Delta SW_i = \alpha, \Delta SE_i = \alpha)$, $\alpha \in [-1.5%, -1.0%]$</td>
<td>1</td>
<td>$(\Delta SW_12 = \alpha, \Delta SE_12 = \alpha, \Delta SW_2 = \alpha, \Delta SE_2 = \alpha)$, $\alpha \in [-1.5%, -1.0%]$</td>
</tr>
<tr>
<td>5</td>
<td>$(\Delta SW_i = \alpha, \Delta SE_i = \alpha)$, $\alpha \in [-1.0%, -0.5%]$</td>
<td>1</td>
<td>$(\Delta SW_12 = \alpha, \Delta SE_12 = \alpha, \Delta SW_2 = \alpha, \Delta SE_2 = \alpha/2)$, $\alpha \in [-1.0%, -0.5%]$</td>
</tr>
<tr>
<td>5</td>
<td>$(\Delta SW_i = \alpha, \Delta SE_i = \alpha)$, $\alpha \in [-1.5%, -1.0%]$</td>
<td>1</td>
<td>$(\Delta SW_12 = \alpha, \Delta SE_12 = \alpha, \Delta SW_2 = \alpha, \Delta SE_2 = \alpha/2)$, $\alpha \in [-1.5%, -1.0%]$</td>
</tr>
<tr>
<td>5</td>
<td>$(\Delta SW_i = \alpha, \Delta SE_i = \alpha)$, $\alpha \in [-0.5%, 0.5%]$</td>
<td>1</td>
<td>$(\Delta SW_12 = \alpha, \Delta SE_12 = \alpha/2, \Delta SW_2 = \alpha, \Delta SE_2 = \alpha/2)$, $\alpha \in [-1.0%, -0.5%]$</td>
</tr>
<tr>
<td>3</td>
<td>$(\Delta SW_i = \alpha, \Delta SE_i = -\alpha)$, $\alpha \in [0.5%, 1.0%]$</td>
<td>133</td>
<td>total no. of classes</td>
</tr>
</tbody>
</table>

A number of classes were considered, each indicating a specific fault condition, represented by a deviation of health parameters within a range of values.
Application on a Turbofan engine

\[\bar{n}_u + \bar{u}_{\text{actual}} \rightarrow \text{EPM} \]

\[\bar{Y}_{\text{actual}} + \bar{n}_Y \rightarrow \text{EPM} \]

\[\bar{f} = 0 \rightarrow \text{EPM} \]

\[\bar{Y}' \]

\[\Delta \bar{Y}' = \frac{\bar{Y}' - \bar{Y}'_o}{\bar{Y}'_o} \]

Classes populated with simulated patterns representing health parameters deviation within the range of ±[0.5%, 2.5%]
Application on a Turbofan engine

<table>
<thead>
<tr>
<th>fault case</th>
<th>actual parameter deviation</th>
<th>estimated parameter deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>SW2=-0.7%, SE2=-0.4% SW12=-1%, SE12=-0.5%</td>
<td>SW2=-0.7%, SE2=-0.4% SW12=-0.7%, SE12=-0.5%</td>
</tr>
<tr>
<td>b</td>
<td>SE12=-1%</td>
<td>SE12=-1.2%</td>
</tr>
<tr>
<td>c</td>
<td>SW26=-1%, SE26=-0.7%</td>
<td>SE26=-1.2%</td>
</tr>
<tr>
<td>d</td>
<td>SE26=-1%</td>
<td>SE26=-1.2%</td>
</tr>
<tr>
<td>e</td>
<td>SW26=-1%</td>
<td>SW26=-1.2%</td>
</tr>
<tr>
<td>f</td>
<td>SW41=+1%</td>
<td>SW41=+0.75%</td>
</tr>
<tr>
<td>g</td>
<td>SW41=-1%, SE41=-1%</td>
<td>SW41=-1.2%, SE41=-1.2%</td>
</tr>
<tr>
<td>h</td>
<td>SE41=-1%</td>
<td>SE41=-1.2%</td>
</tr>
<tr>
<td>i</td>
<td>SE49=-1%</td>
<td>SE49=-1.2%</td>
</tr>
<tr>
<td>j</td>
<td>SW49=-1%, SE49=-0.4%</td>
<td>SW49=-1.2%, SE49=-0.6%</td>
</tr>
<tr>
<td>k</td>
<td>SW49=-1%</td>
<td>SW49=-1.2%</td>
</tr>
<tr>
<td>l</td>
<td>SW49=+1%, SE49=-0.6%</td>
<td>SW49=+0.75%, SE49=-0.4%</td>
</tr>
<tr>
<td>m</td>
<td>A8IMP=+1%</td>
<td>A8IMP=+1.3%</td>
</tr>
<tr>
<td>n</td>
<td>A8IMP=-1%</td>
<td>A8IMP=-1.2%</td>
</tr>
<tr>
<td>o</td>
<td>A8IMP=+2%</td>
<td>A8IMP=+1.8%</td>
</tr>
</tbody>
</table>

Results based on benchmark fault cases delivered by engine manufacturer
Application on a Turbofan engine

SVM applied for sensor fault diagnosis

Classes Definition

- **Sensors deviation**: ±(1.0, 2.0)%
- **Health parameters deviation**: (-2.5%, -1.5%, 0%, +1.5%, +2.5%)

Examined Patterns

- **Sensors deviation**: ±1.5%
- **Health parameters deviation**: (-2.5%, -1.5%, 0%, +1.5%, +2.5%)

Simulated sensor biases for all available sensors, at the simultaneous presence of component faults, where examined

<table>
<thead>
<tr>
<th>SVM</th>
<th>wrong estimations</th>
<th>score</th>
</tr>
</thead>
<tbody>
<tr>
<td>LINEAR</td>
<td>640</td>
<td>0.0%</td>
</tr>
<tr>
<td>POLYNOMIAL</td>
<td>43</td>
<td>93.3%</td>
</tr>
<tr>
<td>SIGMOID</td>
<td>450</td>
<td>1.6%</td>
</tr>
<tr>
<td>RBF</td>
<td>1</td>
<td>99.8%</td>
</tr>
</tbody>
</table>
FAULT DIAGNOSIS OF THERMAL TURBOMACHINES USING SUPPORT VECTOR MACHINES (SVM)

- Description of the diagnostic problem

- Support Vector machines (SVM)
 o The mechanism behind
 o The general classification case

- Application on a Turbofan Engine
 o Aerothermodynamic benchmark fault cases
 o Sensor fault diagnosis

- Application on compressor faults
 o The radial compressor case
 o The axial compressor case

- Summary - Conclusions
Application on compressor faults
actual implemented mechanical faults on two compressors

Radial Compressor

Axial Compressor
Application on compressor faults
Faults Examined: Radial Compressor

Available data consist of:
- 4 sets of 7 thermodynamic data
- 4 sets of 1 fast response measurement

Inlet Distortion Diffuser Fault Impeller Fouling
Application on compressor faults
Faults Examined: Axial Compressor

Implemented faults:
- Fouled Rotor of Stage 2
- Two blades of Rotor 1 fouled
- Twisted blade of Rotor 1
- Three mistuned stator vanes

Available data consist of:
- 4 sets of 7 thermodynamic data
- 4 sets of 4 fast response measurements
Application on compressor faults
results on original and additional data

- Linear
- Polynomial
- RBF
- Sigmoid

original data
additional data
FAULT DIAGNOSIS OF THERMAL TURBOMACHINES USING SUPPORT VECTOR MACHINES (SVM)

- Description of the diagnostic problem

- Support Vector machines (SVM)
 - The mechanism behind
 - The general classification case

- Application on a Turbofan Engine
 - Aerothermodynamic benchmark fault cases
 - Sensor fault diagnosis

- Application on compressor faults
 - The radial compressor case
 - The axial compressor case

- Summary - Conclusions
Summary - Conclusions

• A Support Vector Machine (SVM) method, for gas turbine faults classification and diagnosis, has been presented.

• SVM is a well-known and efficient classification technique that in this work has been used as a stand-alone diagnostic method, supported by an Engine Performance Model.

• SVM efficiency has been examined through application on a number of realistic fault conditions that may encounter in practice on a gas turbine, including aerothemrodynamic faults, sensor faults and mechanical faults.

• The performance of SVM under all examined fault condition indicate that SVM is a powerful technique for Gas Turbine diagnosis.