

GAS TURBINE FAULT DIAGNOSIS USING FUZZY-BASED DECISION FUSION

A. Kyriazis Research Assistant K. Mathioudakis Professor

Laboratory of Thermal Turbomachines National Technical University of Athens

GAS TURBINE FAULT DIAGNOSIS USING FUZZY-BASED DECISION FUSION

- Description of the Fusion Method
- Aggregation theory-Probability Consensus
- Classification of Consensus
- Application Test Cases
- **Summary-Conclusions**

GAS TURBINE FAULT DIAGNOSIS USING FUZZY-BASED DECISION FUSION

Description of the Fusion Method

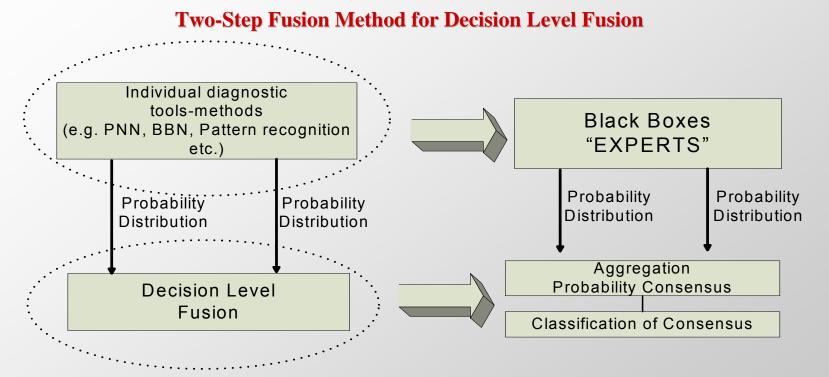
Aggregation theory-Probability Consensus

Classification of Consensus

Application Test Cases

Summary-Conclusions

GENERAL DESCRIPTION



- 1. All the outputs of the independent diagnostic methods are aggregated deriving the *probability consensus*.
- 2. The *probability consensus* is then classified to a certain fault with the aid of Fuzzy Set Theory and Fuzzy Logic

GAS TURBINE FAULT DIAGNOSIS USING FUZZY-BASED DECISION FUSION

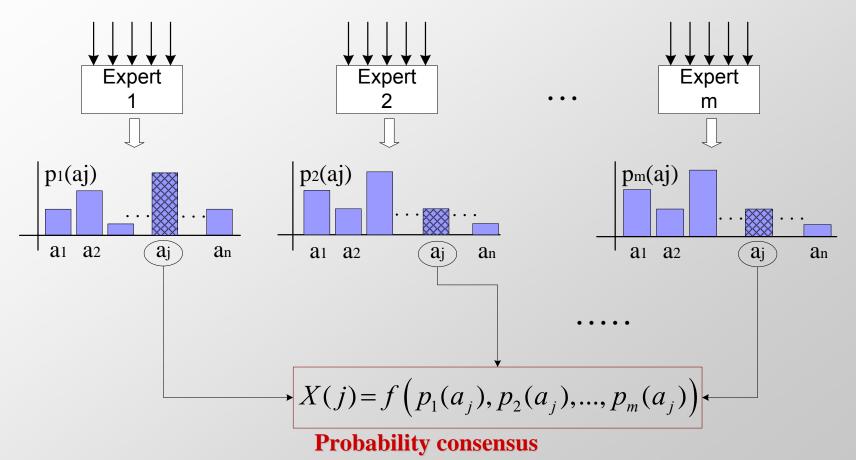
Description of the Fusion Method

Aggregation theory-Probability Consensus

- Classification of Consensus
- Application Test Cases
- **Summary-Conclusions**

AGGREGATION THEORY

m experts provide a probability distribution over the *n* possible faults



PROBABILITY CONSENSUS

The probability consensus (combination of the experts' opinions) is derived by application of the

aggregation function X (weighted average of probability density functions)

$$X(j) = k \cdot \frac{\sum_{i=1}^{m} w_i \cdot p_i(a_j)}{\sum_{i=1}^{m} w_i} , j = 1, ..., n$$

- *k* is a normalization factor (optional)
- When $0 \le w_i \le 1$ (normalized weights adding up to 1) denominator is omitted

GAS TURBINE FAULT DIAGNOSIS USING FUZZY-BASED DECISION FUSION

Description of the Fusion Method

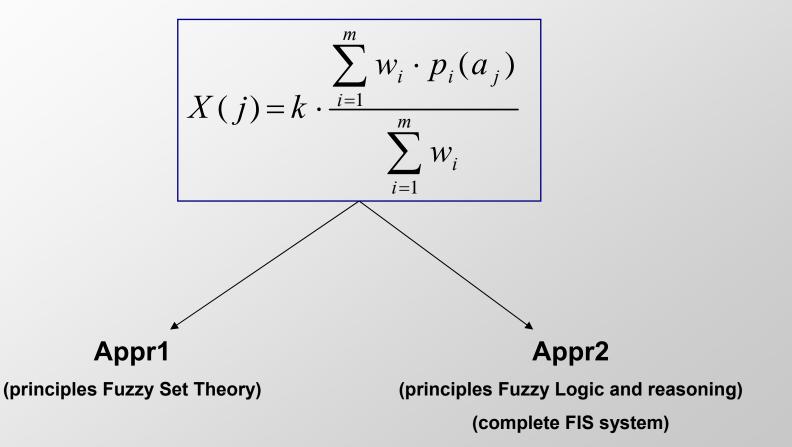
Aggregation theory-Probability Consensus

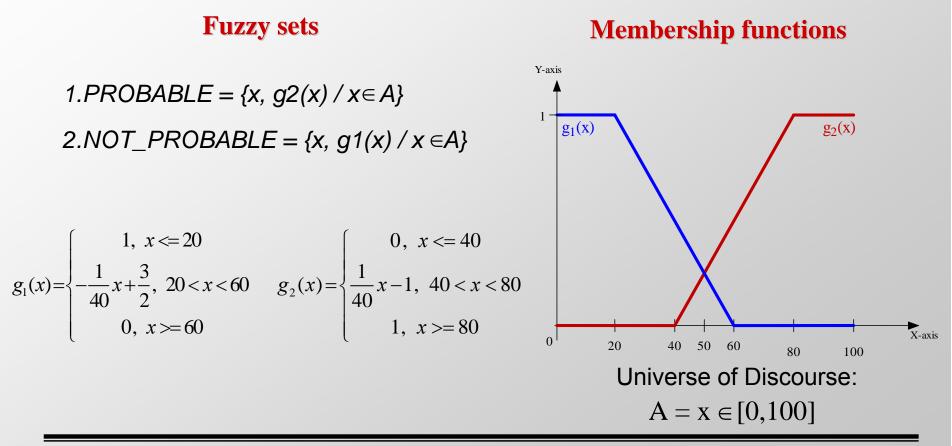
- Classification of Consensus
- Application Test Cases

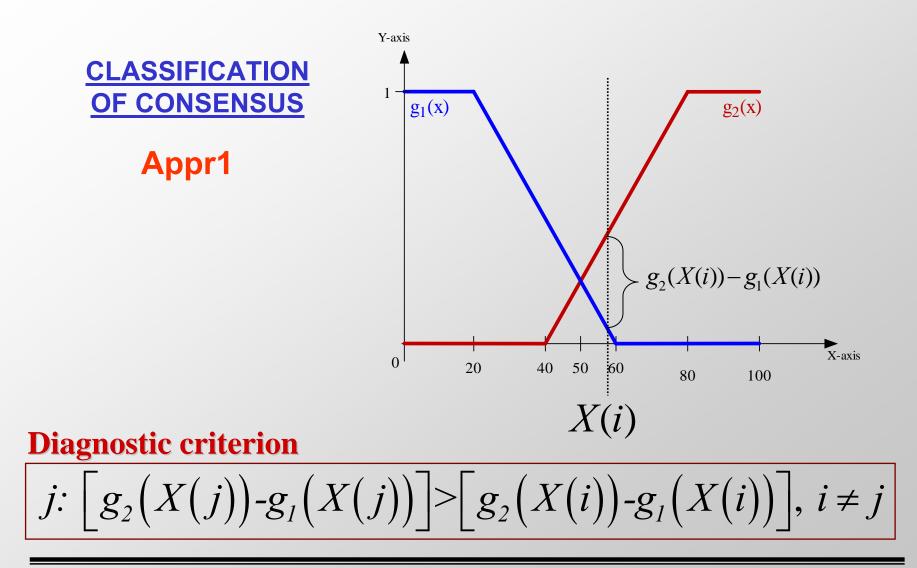
Summary-Conclusions

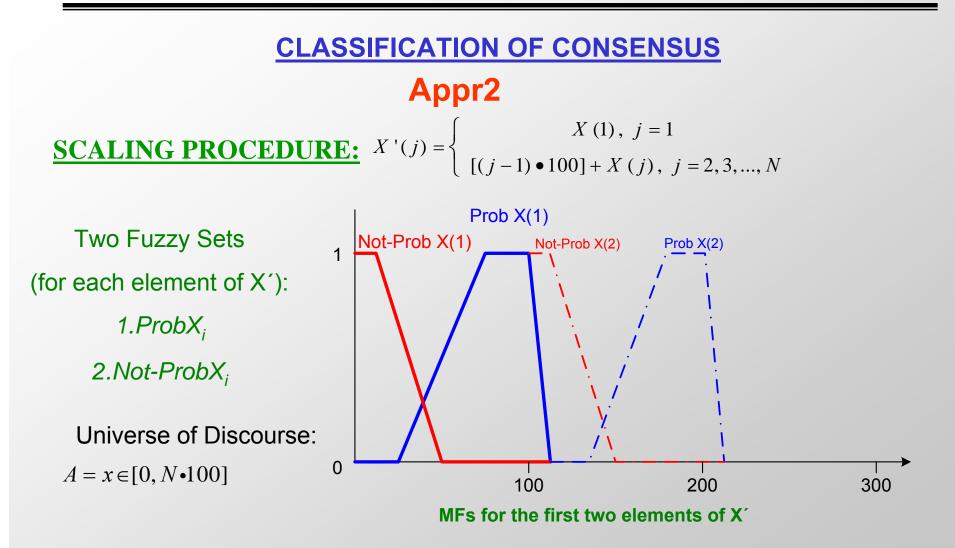
CLASSIFICATION OF CONSENSUS

Two different approaches for fuzzy classification









CLASSIFICATION OF CONSENSUS: Appr2

- A set of fuzzy "if-then" rules equal to number of faults are defined over the membership functions
- •For the FIS, the Mamdani Model of implication
- and the *max-min method of composition* have been considered.
- •For the deffuzification process mean of maximum (mom) method has been selected
- Output is a *Crisp_value*

Diagnostic criterion

$$j : \left[(j-1) \cdot 100 \right] < crisp_value \le \left[j \cdot 100 \right]$$

GAS TURBINE FAULT DIAGNOSIS USING FUZZY-BASED DECISION FUSION

Description of the Fusion Method

•Aggregation theory-Probability Consensus

Classification of Consensus

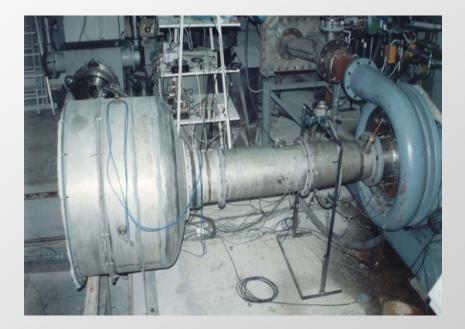
Application Test Cases

Summary-Conclusions

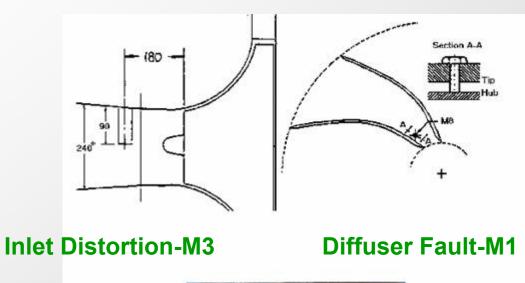
TEST CASE APPLICATIONS

- Two cases have been examined:
 - The case of a <u>radial</u> compressor
 - The case of an <u>axial</u> compressor
- In both cases the goal is to detect deliberately implemented mechanical faults
- The available information is two sets of measurements, in each case:
 - A set of fast response data (vibrations, sound pressures, etc...)
 - A set of performance data (pressures, temperatures, etc...)
- In each case two independently acting diagnostic methods have been applied:
 - The method of PNN for diagnosis over fast response data
 - The method of PNN for diagnosis over performance data

The case of radial compressor



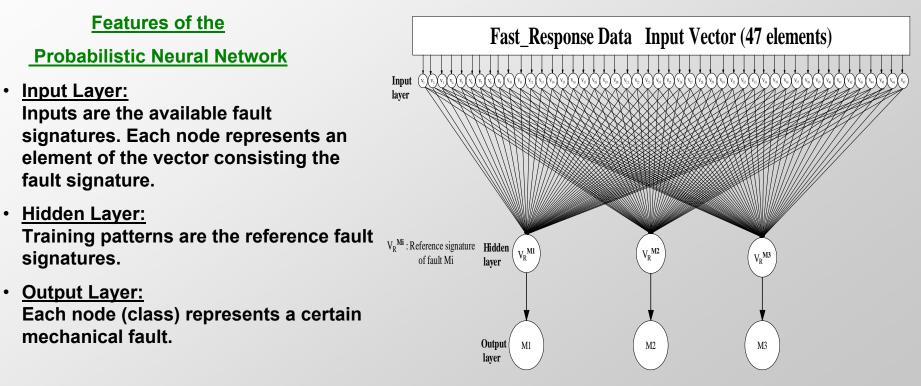
Examined faults



Impeller Fouling-M2

The case of radial compressor

Probabilistic Neural Network (PNN) for Fast Response Data



PNN Architecture for radial compressor case

The case of radial compressor

Probabilistic Neural Network (PNN) for Performance Data

Features of the

Probabilistic Neural Network

Input Layer:

Inputs are the 7 deviations (deltas) of aerothermodynamic measurements according to type:

$$d_i = \frac{Y^i - Y_0^i}{Y_0^i}, i = 1, 2, \dots 7$$

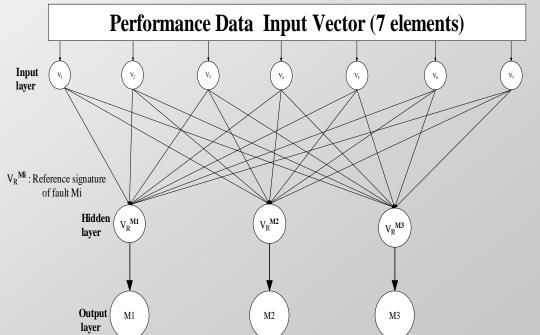
where Y^i is the value of a measurement for the $i^{\rm th}$ fault and $\,Y^i_0\,$ is the value for a "healthy" engine

• Hidden Layer:

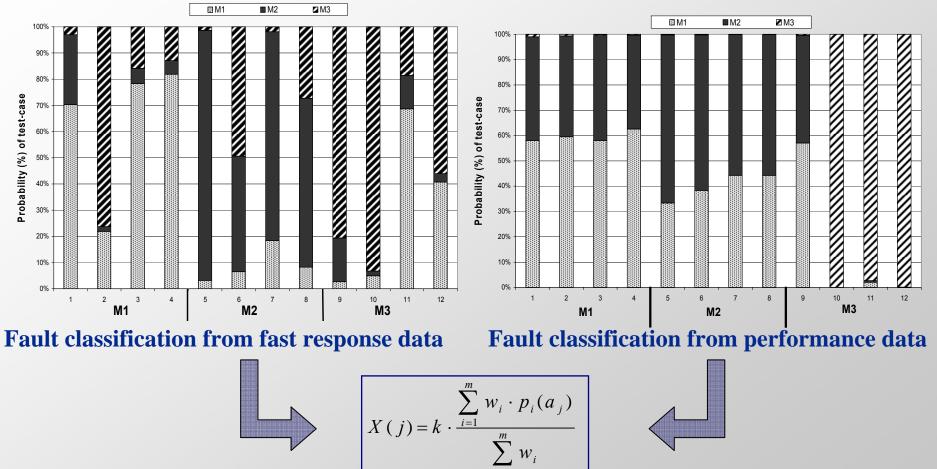
Training patterns are the mean averages of deviations, each corresponding to a specific fault

Output Layer:

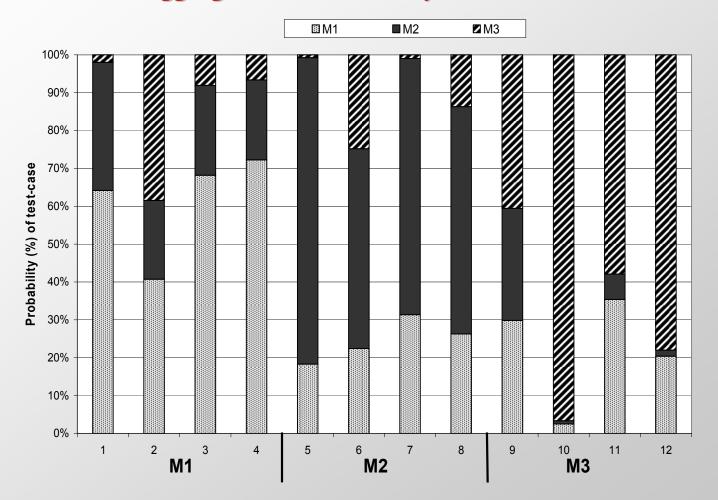
Each node (class) represents a certain mechanical fault.



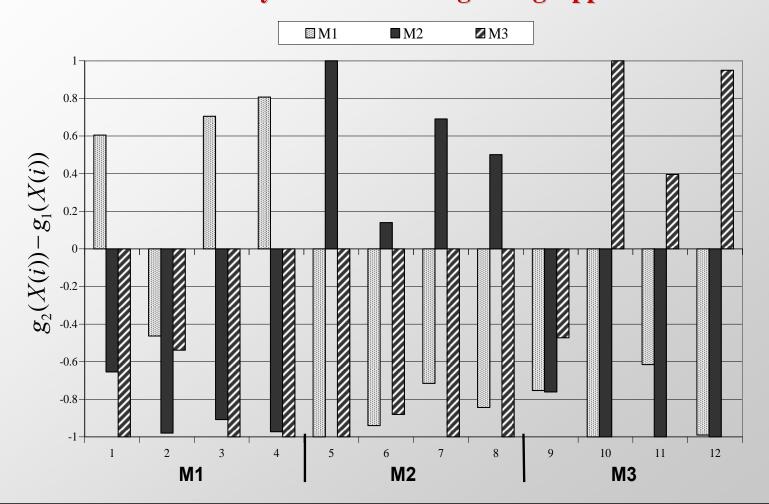
PNN Architecture for radial compressor case



The case of radial compressor Aggregation – Probability consensus results



The case of radial compressor Fuzzy classification regarding Appr1

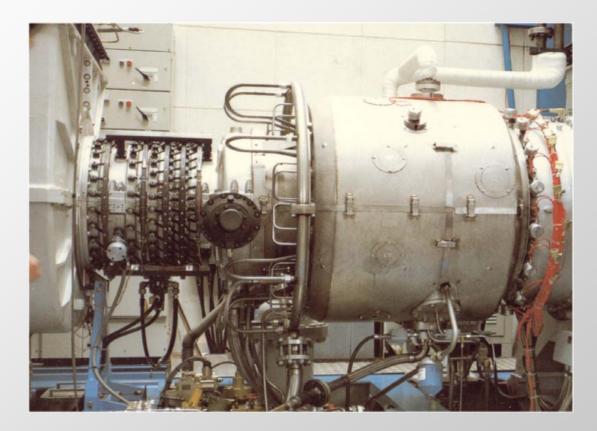


The case of radial compressor Overall Results

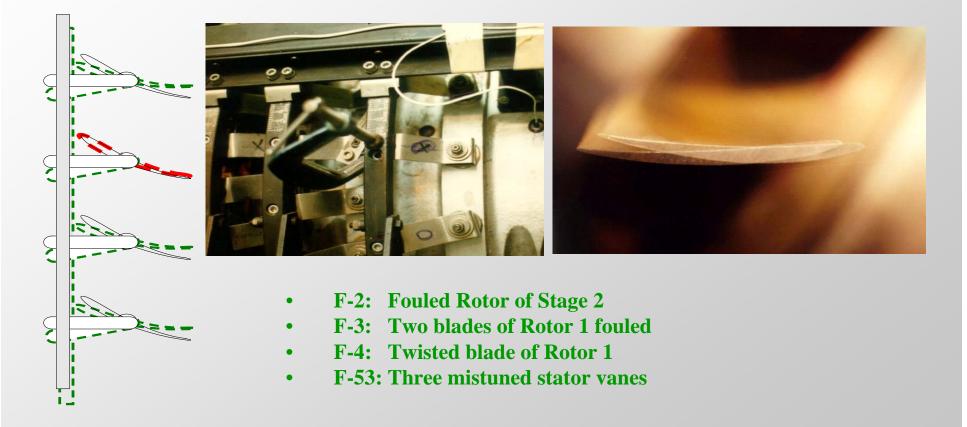
	Radial compressor			
	Fast Response data + Performance data			
	Set A1 + Performance	Set A2 + Performance		
PNN_Fast Response	3/12	1/12		
PNN_Performance	1/12	1/12		
Appr1	0/12	1/12		
Appr2	0/12	1/12		

test-cases of incorrect classification / total test-cases

The case of axial compressor

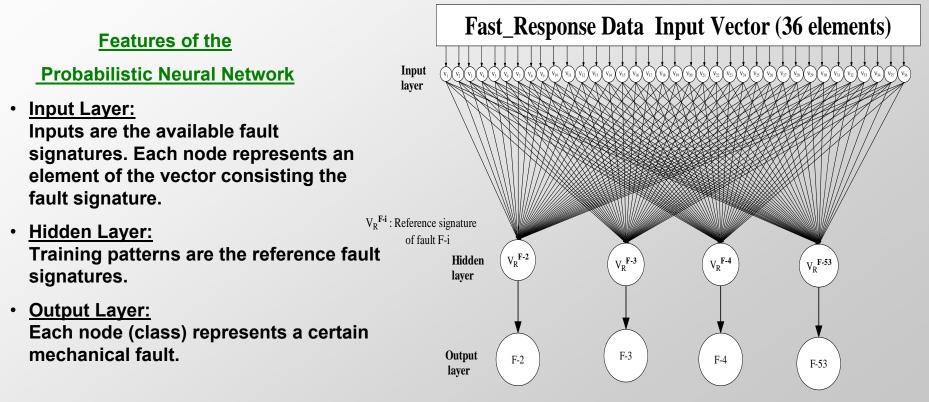


The case of axial compressor Examined faults



The case of axial compressor

Probabilistic Neural Network (PNN) for Fast Response Data



PNN Architecture for axial compressor case

The case of axial compressor

Probabilistic Neural Network (PNN) for Performance Data

Features of the

Probabilistic Neural Network

Input Layer:

Inputs are the 7 deviations (deltas) of aerothermodynamic measurements according to type:

$$d_i = \frac{Y^i - Y_0^i}{Y_0^i}, i = 1, 2, \dots 7$$

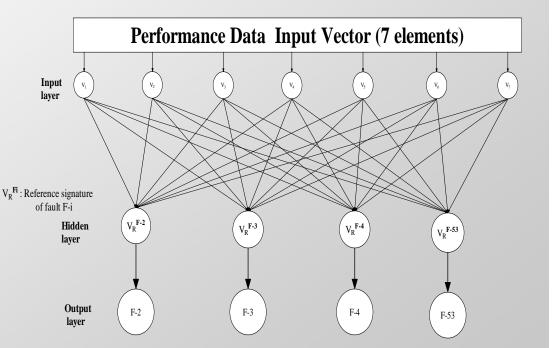
where Y^i is the value of a measurement for the ith fault and Y_0^i is the value for a "healthy" engine

Hidden Layer:

Training patterns are the mean averages of deviations, each corresponding to a specific fault

Output Layer:

Each node (class) represents a certain mechanical fault.



PNN Architecture for axial compressor case

The case of axial compressor Overall Results

	Axial compressor				
	Fast Response data + Performance data				
	ACC1+ Performance	ACC2+ Performance	ACC3+ Performance	PT2+ Performance	
PNN_Fast Response	1/16	0/16	0/16	0/16	
PNN Performance	4/16	4/16	4/16	4/16	
Appr1	2/16	0/16	0/16	0/16	
Appr2	2/16	0/16	0/16	0/16	

GAS TURBINE FAULT DIAGNOSIS USING FUZZY-BASED DECISION FUSION

Description of the Fusion Method

Aggregation theory-Probability Consensus

Classification of Consensus

Application Test Cases

Summary-Conclusions

GAS TURBINE FAULT DIAGNOSIS USING FUZZY-BASED DECISION FUSION

- A new approach for information fusion by combining data of different nature has been demonstrated
- It utilizes the concepts of Aggregation Theory, Fuzzy Set theory and Fuzzy Logic principles
- PNN networks act as first level diagnostic techniques ("experts").
- Improvement to the final diagnostic decision by the proposed fusion method has been presented by application to test-cases of faults from a radial compressor and an axial compressor