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TwoTwo--Step Fusion Method for Decision Level FusionStep Fusion Method for Decision Level Fusion

Individual diagnostic 
tools-methods

(e.g. PNN, BBN, Pattern recognition 
etc.)

Decision Level
Fusion

Probability
Distribution

Probability
Distribution

Black Boxes
“EXPERTS”

Aggregation
Probability Consensus

Classification of Consensus

Probability
Distribution

Probability
Distribution

1. All the outputs of the independent diagnostic methods are 
aggregated deriving the probability consensus.

2. The probability consensus is then classified to a certain fault 
with the aid of Fuzzy Set Theory and Fuzzy Logic

GENERAL DESCRIPTION
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AGGREGATION THEORY
mm experts provide a probability distribution over the experts provide a probability distribution over the nn possible faultspossible faults

Probability consensusProbability consensus
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The probability consensus (combination of the expertsThe probability consensus (combination of the experts’’ opinions) opinions) 

is derived by application of the is derived by application of the 

aggregation function  aggregation function  XX (weighted average of probability density functions)(weighted average of probability density functions)
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PROBABILITY CONSENSUS

• k is a normalization factor (optional)

• When  0≤ wi ≤1 (normalized weights adding up to 1) denominator is omitted
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Two different approaches for fuzzy classificationTwo different approaches for fuzzy classification

CLASSIFICATION OF CONSENSUS

Appr1
(principles Fuzzy Set Theory)

Appr2
(principles Fuzzy Logic and reasoning)

(complete FIS system)
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Membership functionsMembership functions

1.PROBABLE = {x, g2(x) / x   A}

2.NOT_PROBABLE = {x, g1(x) / x   A} 

Universe of Discourse:
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Appr1

CLASSIFICATION
OF CONSENSUS
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SCALING PROCEDURE:

Two Fuzzy Sets 

(for each element of X΄):

1.ProbXi

2.Not-ProbXi

Universe of Discourse:

MFs for the first two elements of X΄
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• A set of fuzzy “if-then” rules equal to number of faults are defined over the 

membership functions

•For the FIS, the Mamdani Model of implication

and the max-min method of composition have been considered.

•For the deffuzification process mean of maximum (mom) method has been selected

• Output is a crisp_value

Appr2

[ ] [ ]: ( 1) 100 _ 100j j crisp value j− ⋅ < ≤ ⋅

CLASSIFICATION OF CONSENSUS:

Diagnostic criterionDiagnostic criterion
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TEST CASE APPLICATIONS

Two cases have been examined:Two cases have been examined:
-- The case of a The case of a radialradial compressorcompressor

-- The case of an The case of an axialaxial compressor compressor 

In both cases the goal is to detect deliberately implemented In both cases the goal is to detect deliberately implemented 
mechanical faultsmechanical faults

The available information is two sets of measurements, in each The available information is two sets of measurements, in each 
case: case: 

-- A set of fast response data (vibrations, sound pressures, etcA set of fast response data (vibrations, sound pressures, etc……))

-- A set of performance data (pressures, temperatures, etcA set of performance data (pressures, temperatures, etc……))

In each case two independently acting diagnostic methods In each case two independently acting diagnostic methods 
have been applied:have been applied:

-- The method of PNN for diagnosis over fast response dataThe method of PNN for diagnosis over fast response data

-- The method of PNN for diagnosis over performance dataThe method of PNN for diagnosis over performance data
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The case of radial compressor
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Examined faultsExamined faults

Impeller Fouling-M2

Inlet Distortion-M3 Diffuser Fault-M1

The case of radial compressor
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PNN Architecture for radial compressor case

Probabilistic Neural Network (PNN) for Fast Response Data 

Features of the

Probabilistic Neural Network

• Input Layer:
Inputs are the available fault 
signatures. Each node represents an 
element of the vector consisting the 
fault signature.

• Hidden Layer:
Training patterns are the reference fault 
signatures.

• Output Layer:
Each node (class) represents a certain 
mechanical fault.
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 layer
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Mi : Reference signature

                of fault Mi
Hidden
layer

Fast_Response Data   Input Vector (47 elements)
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The case of radial compressor
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PNN Architecture for radial compressor case

Probabilistic Neural Network (PNN) for Performance Data

Features of the

Probabilistic Neural Network
• Input Layer:

Inputs are the 7 deviations (deltas) of 
aerothermodynamic measurements according 
to type:

where       is the value of a measurement for 
the ith fault and        is the value for a “healthy”
engine

• Hidden Layer:
Training patterns are the mean averages of 
deviations, each corresponding to a specific 
fault

• Output Layer:
Each node (class) represents a certain 
mechanical fault.
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The case of radial compressor
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Classification Probabilities for radial compressor faults

Fault classification from fast response data
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Fault classification from performance data
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Aggregation Aggregation –– Probability consensus resultsProbability consensus results
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The case of radial compressor
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Fuzzy classification regarding Appr1Fuzzy classification regarding Appr1
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Overall ResultsOverall Results

test-cases of incorrect classification / total test-cases

1/120/12Appr2

1/120/12Appr1

1/121/12PNN_Performance

1/123/12PNN_Fast Response

Set A2 + PerformanceSet A1 + Performance

Fast Response data + Performance data

Radial compressor

The case of radial compressor
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The case of axial compressor
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• F-2:   Fouled Rotor of Stage 2
• F-3:   Two blades of Rotor 1 fouled
• F-4:   Twisted blade of Rotor 1 
• F-53: Three mistuned stator vanes

Examined faultsExamined faults
The case of axial compressor
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PNN Architecture for axial compressor case

Probabilistic Neural Network (PNN) for Fast Response Data 

Features of the

Probabilistic Neural Network

• Input Layer:
Inputs are the available fault 
signatures. Each node represents an 
element of the vector consisting the 
fault signature.

• Hidden Layer:
Training patterns are the reference fault 
signatures.

• Output Layer:
Each node (class) represents a certain 
mechanical fault.
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The case of axial compressor
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PNN Architecture for axial compressor case

Probabilistic Neural Network (PNN) for Performance Data

Features of the

Probabilistic Neural Network
• Input Layer:

Inputs are the 7 deviations (deltas) of 
aerothermodynamic measurements according 
to type:

where       is the value of a measurement for 
the ith fault and        is the value for a “healthy”
engine

• Hidden Layer:
Training patterns are the mean averages of 
deviations, each corresponding to a specific 
fault

• Output Layer:
Each node (class) represents a certain 
mechanical fault.
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Performance

0/160/160/161/16PNN_Fast Response

PT2+ PerformanceACC3+ 
Performance
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Performance

ACC1+ 
Performance

Fast Response data + Performance data

Axial compressor

Overall ResultsOverall Results
The case of axial compressor
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A new approach for information fusion by combining data of different nature 
has been demonstrated

It utilizes the concepts of Aggregation Theory, Fuzzy Set theory and Fuzzy 
Logic principles

PNN networks act as first level diagnostic techniques (“experts”).

Improvement to the final diagnostic decision by the proposed fusion method 
has been presented by application to test-cases of faults from a radial 
compressor and an axial compressor

GAS TURBINE FAULT DIAGNOSIS
USING FUZZY-BASED DECISION FUSION


