

SETTING UP A BELIEF NETWORK FOR TURBOFAN DIAGNOSIS WITH THE AID OF AN ENGINE PERFORMANCE MODEL

C. Romessis Research Assistant A. Stamatis Research associate K. Mathioudakis Associate Professor

Laboratory of Thermal Turbomachines National Technical University of Athens

SETTING UP A BELIEF NETWORK FOR TURBOFAN DIAGNOSIS WITH THE AID OF AN ENGINE PERFORMANCE MODEL

§ Formulation of the diagnostic problem

§ Features of Bayesian Belief Networks (BBN)

§ Study of the diagnostic performance of BBN

§ Summary - Conclusions

Formulation Of The Diagnostic Problem (I)

<u>OBJECTIVE:</u> BBN to diagnose component faults of High-by-Pass ratio, partially mixed, turbofan engine

Layout of a turbofan engine and station numbering for positions of interest.

Formulation Of The Diagnostic Problem (II)

ØInformation Provided

§Quantities defining the operating Conditions(4)

- **§ Ambient Conditions**
- § Flight Speed

§Set Point Variable (Fuel Flow Rate)

§Quantities for Deducing Engine Condition (7)

- § Shafts' speeds
- § Pressure, Temperature

ØInformation Required

§<u>Condition of individual engine components</u> §Kind, Location, Severity (magnitude) of faults

Turbofan Engine Modeling

Positions of interest

	Modules	Related Factors
	High Pressure	
	Turbine	SW41, SE41
	Low Pressure	
	Turbine	SW49, SE49
	Exhaust Area	A8IMP

Elements of BBN

Structure of the BBN used for GT diagnosis (I)

Structure of the BBN used for GT diagnosis (II)

States of nodes of the current BBN

Defining the links among nodes using

The Engine Performance Model (EPM)

(Not Linked nodes)

the state 'Ok' of node 'P13'

Defining the CPTs of the nodes using the EPM

Generating the Testing patterns (I)

A case of successful detection of fault

Evidence is the signature of fault: SE41=-2.5%.

A case of unsuccessful detection of fault

Evidence is the signature of fault: A8IMP=1.5%.

A case of ambiguous detection of fault

Evidence is the signature of fault: SW2=-2.5%.

Estimated probabilities on the case of

a fault free operation of the engine.

Overall diagnostic performance of the BBN

Conclusions - Results

•The general performance of the BBN is promising; although its effectiveness needs improvement BBNs can be built from mathematical models, without the need of hard to find flight data.

- •Diagnosis based on the observation of fewer measurements (7) than the considered fault parameters (11)
- •Fault are detected with high reliability.
- •In most cases of failed detection the BBN did not detect any fault at all (no false alarms).
- •It is expected that more accurate approaches for building the BBN will make the network more 'sensitive' to the presence of faults.