TURBOELECTRIC DISTRIBUTED PROPULSION MODELLING ACCOUNTING FOR FAN BOUNDARY LAYER INGESTION AND INLET DISTORTION

G. Athanasakos, N. Aretakis, A. Alexiou, K. Mathioudakis

Laboratory of Thermal Turbomachines, School of Mechanical Engineering National Technical University of Athens, Greece

> ASME Turbo Expo 2020 21-25 September

Scope of Paper

- > Development of a modelling approach for **BLI** (**B**oundary **L**ayer **I**ngestion) propulsion systems
- > Consideration of the inlet distortion distribution alongside the propulsors
- > Quantification of BLI effect on propulsion system performance

Study of this Paper

> N3-X Aircraft concept¹

- Hybrid Wing Body aircraft
- <u>T</u>urbo<u>e</u>lectric <u>D</u>istributed <u>P</u>ropulsion (TeDP)
- BLI Propulsors
- Boundary Layer Ingesting airflow
 - 1. Reduces inlet momentum drag
 - 2. Reduced aircraft net drag
 - 3. Increases propulsor inlet distortion
- BLI gains in TeDP system performance
 - 1. Lower power requirements compared to a equivalent propulsion system of podded propulsors
 - 2. Reduced fuel burn (up to 10% lower TSFC^{1,2,3,4})
 - 3. Increased propulsive efficiency ($\leq 5\%^1$)

¹Felder, J. L., Kim, H. D. and Brown, G. V., "An Examination of the Effect of Boundary Layer Ingestion on Turboelectric Distributed Propulsion", 49th AIAA Aerospace Science meeting, 2011.
²A. Turnbull, H. Jouan, P. Giannakakis, A. T. Isikveren, "Modelling Boundary Layer Ingestion at the Conceptual Level", Department of Energy and Propulsion, SAFRAN S.A., ISABE-2017-22700, 2017.
³R. T. Kawai, D. M. Friedman, L. Serrano, "Blended Wing Body (BWB) Boundary Layer Ingestion (BLI) Inlet Configuration and System Studies", NASA/CR-2006-214534, December, 2006.
⁴J. R. Welstead, J.L. Felder, "Conceptual Design of a Single-Aisle Turboelectric Commercial Transport with Fuselage Boundary Layer Ingestion", 54th AIAA Aerospace meeting, AIAA-2016-1027, 2016.

Modelling Tool

- > Object-Oriented
- Steady State
- > Transient
- Multi-Disciplinary
- Multi-Point Design
- > Off-Design
- Test Analysis
- Diagnostics
- Sensitivity
- Optimization
- Deck Generation

¹⁴A. Alexiou, Introduction to Gas Turbine Modelling with PROOSIS, Madrid, Spain: Empresarios Agrupados Internacional (E.A.I.) S.A., 2014.

Laboratory of Thermal Turbomachines (LTT) National Technical University of Athens (NTUA)

ASME Turbo Expo 2020 21-25 September

TURBOELECTRIC DISTRIBUTED PROPULSION MODELLING ACCOUNTING FOR FAN BOUNDARY LAYER INGESTION AND INLET DISTORTION

Contents

Methodology

- 1. Compressor Inlet Distortion Modelling
- 2. BLI Propulsor Model
- 3. Turboelectric Distributed Propulsion Model
- 4. Validation Cases

Test Cases

- 1. Configurations with Different Number of Propulsors
- 2. Different Propulsors Array Location

Summary & Conclusions

Methodology

Methodology

- 1. Compressor Inlet Distortion Modelling
- 2. BLI Propulsor Model
- 3. Turboelectric Distributed Propulsion Model
- 4. Validation Cases

Test Cases

- 1. Configurations with Different Number of Propulsors
- 2. Different Propulsors Array Location

Summary & Conclusions

Compressor Inlet Distortion Modelling

<u>**P**</u>arallel <u>**C**</u>ompressor <u>**T**</u>heory (**PCT**)¹⁵ is utilized to assess the compressor performance under the influence of inlet distortion.

- > Circumferentially inlet distorted flow is described by two parallel uniform streams :
 - the clean stream (H) of high total pressure and velocity (PtH & VH)
 - the distorted stream (L) of low total pressure and velocity (PtL & VL)
 - the inlet total temperature is considered uniform
 - each sector extents proportionally to its respective pressure section of distorted inlet
- ≻ Each stream enters its own subcompressor → Inlet area is divided into two different virtual segments (AH,in & AL,in)

Subcompressors

- > Their maps are scaled in terms of mass flow proportionally to their inlet extent
- > No scaling is made in terms of pressure ratio and efficiency compared to original compressor map
- > Work in parallel at the same rotational speed \rightarrow operating points of the two subcompressors in the same speed line

two subcompressors in the same speed line

➤ Basic assumptions :

- 1. Constant axial velocity through each subcompressor
- 2. Common ratio of mass flow rate to inlet area for the two subcompressors

¹⁵Pearson, H., McKenzie, A. B., "Wakes in Axial Compressors", Journal of the Royal Aeronautical Society, 63, July 1959.

'n

Н

Compressor Inlet Distortion Modelling

- The operating point of overall compressor is calculated as an area-averaged point by adjusting the ratio of exit static pressures of two streams¹⁶
- The streams are assumed well-mixed providing a uniform flow at compressor exit

Algorithm of calculation procedure

- > Input :
 - Inlet distortion characteristics (extent and intensity)
 - Inlet geometry (Dtip)
 - Original compressor map (without presence of distortion)
- > Output :
 - Exit conditions (Pt, Tt, Ps, Ts, m, V)

¹⁶Pokhrel, M., Gladin, J., Garcia, E., Mavris, N., "A Methodology for Quantifying Distortion Impacts using a Modified Parallel Compressor Theory", Proceedings of ASME Turbo Expo 2018, Oslo, Norway, GT 2018-77089, 2018.

BLI Propulsor Model

Propulsor Inlet and Fan Components

- > Treatment of a rectangular-to-circular inlet duct for the propulsor¹⁸
- > Constant Ps, Tt and δ_{BL} through inlet duct
- > Boundary layer velocity distribution is estimated with 1/7 power law profile²⁰
- Velocity distribution profile is used to assess H, Fdrag, Dtip
- > Inlet non-uniformity is described as circumferential distortion at fan face
- > Inlet distorted fan performance is assessed utilizing PCT
- > Fan design adiabatic efficiency and corrected tip speed = $f(FPR)^1$
- \blacktriangleright Wp = $f(Dtip,Utip)^{20}$
 - Only fan and downstream duct are considered for Wp

¹⁸Hardin, L. W., Tillman, G., Sharma, O.P., Berton, J., Arend, D.J., "Aircraft Study of Boundary Layer Ingesting Propulsion", 48th AIAA/ASME/SAE/ASEE, August 2012.
²⁰C. Liu, Turboelectric Distributed Propulsion System Modelling, PhD Thesis, Cranfield University, 2013.
¹Felder, J. L., Kim, H. D. and Brown, G. V., "An Examination of the Effect of Boundary Layer Ingestion on Turboelectric Distributed Propulsion", 49th AIAA Aerospace Science meeting, 2011.

Laboratory of Thermal Turbomachines (LTT) National Technical University of Athens (NTUA) TURBOELECTRIC DISTRIBUTED PROPULSION MODELLING ACCOUNTING FOR FAN BOUNDARY LAYER INGESTION AND INLET DISTORTION

BLI Propulsor Model

- > Downstream Duct Input :
 - Pressure drop

> Nozzle Input :

- Thrust and discharge coefficients
- Nozzle exit area (Aexit)

> BLI Propulsor Model Input:

- MN, Alt, δ_{BL}
- Propulsor Geometry (B, Dtip, Aexit)

ASME Turbo Expo 2020 21-25 September

TURBOELECTRIC DISTRIBUTED PROPULSION MODELLING ACCOUNTING FOR FAN BOUNDARY LAYER INGESTION AND INLET DISTORTION

Turboelectric Distributed Propulsion Model

Turboshaft Engine Model

- > Each turbomachinery component utilizes an appropriate map for performance assessment
- > Input:
 - Components Data (MN, Alt, pressure losses of ducts, Aexit, turbomachinery maps)

Turboelectric Distributed Propulsion Model

BLI TeDP Model

Electrical Bus Component

- Turboshaft engine model
- Electrical Bus Component
- BLI Propulsor Models

- Electrical Power transmission (~0.1% power losses)
- Power split between propulsors for common thrust production
- > Half propulsion system configuration is considered (1 turboshaft engine and 7 propulsors)

> Input :

- Flight MN, Alt
- Components Data
- MN & δ_{BL} distribution along propulsors array
- Capable of performing calculations for both BLI and non BLI TeDP system configurations

Laboratory of Thermal Turbomachines (LTT)

National Technical University of Athens (NTUA)

Validation Cases

Distorted Compressor Validation

- Compressor performance under inlet distortion
- > DFVLR transonic single-stage compressor¹⁷
- Distorted inlet section
 - 120° extent
 - 7.66% pressure drop
- Distorted map at 70/85/100% corrected speeds

Mean Relative Errors (%)						
Model (aPQ=1,02)	PR	Efficiency	PRS			
Vs. Numerical ¹⁷	0,67	3,1	2,34			
Vs. Experimental ¹⁷	1,26	6,53	-			

- Sufficient agreement in predicted PR at all examined speeds compared to both numerical and experimental data
- ✓ Sufficient agreement in predicted efficiency compared to numerical results and at lower speeds regarding the experimental data

¹⁷M. Lecht, "Improvement of the Parallel Compressor Model by Consideration of Unsteady Blade Aerodynamics", AGARD-CP-400, Conference Proceeding No. 400, Engine Response to Distorted Inflow Condition

Validation Cases

Propulsor Validation

- Impact of inlet distortion on gross thrust production
- > High pressure PW1128 compressor (GIT Model) ¹⁶
- Distorted inlet section
 - 180° extent
 - Various examined distortion intensity levels (DPCP)

- Sufficient agreement for each examined distortion case at high speeds
- ✓ Deviations of 3% occurred at low speeds (<80%) for the highest examined distortion case even though the mean error lied to 1.5% for DPCP=0.10

DPCP parameter	0.01	0.03	0.05	0.08	0.10
Error in thrust (%)	0.05	0.14	0.53	1.01	1.35

¹⁶Pokhrel, M., Gladin, J., Garcia, E., Mavris, N., "A Methodology for Quantifying Distortion Impacts using a Modified Parallel Compressor Theory", Proceedings of ASME Turbo Expo 2018, Oslo, Norway, GT 2018-77089, 2018.

1.1

Laboratory of Thermal Turbomachines (LTT) National Technical University of Athens (NTUA)

Validation Cases

TeDP Model Validation

- BLI TeDP system performance
- > N3-X aircraft propulsion system (NASA Model) ¹
- Design point parametric analysis of FPR
 - Alt = 30000 ft, MN = 0.84
 - Total Thrust = 118.99 kN
- Averaged common inlet conditions are considered for propulsors array
 - MN = 0.81
 - δ_{BL} = 0.4572 m
- ✓ Sufficient agreement in predicted TSFC and propulsive efficiency (both provided mean deviations about 0.6%)

Laboratory of Thermal Turbomachines (LTT) National Technical University of Athens (NTUA) ASME Turbo Expo 2020 21-25 September TURBOELECTRIC DISTRIBUTED PROPULSION MODELLING ACCOUNTING FOR FAN BOUNDARY LAYER INGESTION AND INLET DISTORTION

GT2020-14621

Methodology

- 1. Compressor Inlet Distortion Modelling
- 2. BLI Propulsor Model
- 3. Turboelectric Distributed Propulsion Model
- 4. Validation Cases

Test Cases

- 1. Configurations with Different Number of Propulsors
- 2. Different Propulsors Array Location

Summary & Conclusions

A Design Point Calculation is carried out in two steps :

1st Step

- > Averaged common inlet conditions applied for all propulsors
- Aim of this initial stage
 - Preliminary design of propulsors (propulsor inlet duct height, fan tip diameter, fan map scaling factors, nozzle exit area)
 - Preliminary design of turboshaft engine (compressor/turbine map scaling factors, nozzle exit area)

2nd Step

- > Adjustment of local inlet conditions to each propulsor unit separately
- > MN and δ_{BL} distributions are required¹
- ▶ Provided results of 2^{nd} step → Estimation of BLI TeDP system performance

¹Felder, J. L., Kim, H. D. and Brown, G. V., "An Examination of the Effect of Boundary Layer Ingestion on Turboelectric Distributed Propulsion", 49th AIAA Aerospace Science meeting, 2011.

- 2 turboshaft engines and 14 propulsors in total
- MN distribution : 0.8 ... 0.82 and δ_{BL} distribution : 0.447 ... 0.46 m

Propulsion System Parameters

Alt = 30000 ft Flight MN = 0.84 Total Thrust = 118.99 kN TSFC = 9.95 mg/N/s Thrust Split Ratio = 0.927 Total Power = 28.2 MW eBPR = 28.18

Propulsor Parameters

FPR = 1.3 Fan Efficiency = 0.954 Fan Tip Diameter = 1.097 m Inlet Duct Height = 0.73 m Inlet Duct Width = 1.219 m⁽¹⁾ Inlet Losses = 0.2%⁽¹⁾ Nozzle Exit Area = 0.6585 m²

Turboshaft Parameters

Mass Flow Rate = 23.41 kg/s TIT = 1811.1 K LP spool speed = 7000 rpm HP spool speed = 10000 rpm OPR = 74.8 Nozzle PR = 1.63 Nozzle Exit Area = 0.3301 m²

¹Felder, J. L., Kim, H. D. and Brown, G. V., "An Examination of the Effect of Boundary Layer Ingestion on Turboelectric Distributed Propulsion", 49th AIAA Aerospace Science meeting, 2011.

Laboratory of Thermal Turbomachines (LTT) National Technical University of Athens (NTUA) ASME Turbo Expo 2020 21-25 September TURBOELECTRIC DISTRIBUTED PROPULSION MODELLING ACCOUNTING FOR FAN BOUNDARY LAYER INGESTION AND INLET DISTORTION

Configurations with Different Number of Propulsors

- > 5 to 8 propulsors are examined for the half array configuration
- > Constant propulsor inlet width at 1.219 m constrained by 20 m aircraft span
- Increasing FPR leads to higher TSFC, but lower weight levels
- > Increasing the number of propulsors leads to lower TSFC and weight levels

BLI gains for different number of propulsors

Maximum $\Delta n_p = +4.72 \%$ @ 16 propulsors in total

ASME Turbo Expo 2020 21-25 September

Laboratory of Thermal Turbomachines (LTT) National Technical University of Athens (NTUA)

Different Propulsors Array Location

- > 3 different propulsors array locations of 14 propulsors are examined alongside the aircraft centerline
- > Each location is described as fraction of centerline x/c
 - x/c = 75% (frontwards) \rightarrow MN = 0.82 / $\delta_{BL} = 0.432$ m
 - x/c = 77.5% (reference location) \rightarrow MN = 0.81 / δ_{BL} = 0.457 m
 - x/c = 80% (rearwards) $\rightarrow MN = 0.8 / \delta_{BL} = 0.508 m$
- \blacktriangleright MN and δ_{BL} distributions are applied at each case¹

✓ Moving the propulsors array rearwards improves TSFC and n_p, but increases the inlet distortion level to the propulsors

¹Felder, J. L., Kim, H. D. and Brown, G. V., "An Examination of the Effect of Boundary Layer Ingestion on Turboelectric Distributed Propulsion", 49th AlAA Aerospace Science meeting, 2011.

Laboratory of Thermal Turbomachines (LTT) National Technical University of Athens (NTUA) Averaged inlet characteristics

of each position

Summary & Conclusions

Methodology

- 1. Compressor Inlet Distortion Modelling
- 2. BLI Propulsor Model
- 3. Turboelectric Distributed Propulsion Model
- 4. Validation Cases

Test Cases

- 1. Configurations with Different Number of Propulsors
- 2. Different Propulsors Array Location

Summary & Conclusions

Summary & Conclusions

- A modelling approach of BLI TeDP systems considering the influence of inlet distortion was presented. The aim of this study was to estimate and quantify the BLI benefits on the performance of TeDP propulsion systems. The N3-X propulsion system was modelled in PROOSIS, developing a model of BLI TeDP system.
- The accounting of inlet distortion which a BLI propulsor faces allowed to assess the impact of the MN and δBL distribution alongside the propulsors array instead of considering a common averaged inlet for all propulsors.
- **□** Each developed model in PROOSIS was validated by comparing it to numerical and/or experimental data.
- Design point calculations were carried out in two phases, by firstly applying a common averaged inlet condition to all propulsors for establishing their key dimensions. In the second phase, the actual performance of the propulsion system was estimated by adjusting to each propulsor its own local inlet condition
- The impact of the number of propulsors and their array location on performance levels were studied, aiming to assess the BLI gains for each examined configuration
 - > Increasing the number of propulsors results in greater improvements in terms of TSFC, np and weight reduction
 - > BLI gains increase at higher FPRs, while BLI implementation may increase the weight of propulsion system at low FPRs
 - > A maximum reduction of TSFC about 10% and increase of np about 5% can be achieved for 16 propulsor units
 - > Moving the propulsors array location rearwards increases the BLI benefits but also the inlet distortion to the propulsors

TURBOELECTRIC DISTRIBUTED PROPULSION MODELLING ACCOUNTING FOR FAN BOUNDARY LAYER INGESTION AND INLET DISTORTION

Thank you for your attention !