Direct Integration of Axial Turbomachinery Preliminary Aerodynamic Design Calculations in Engine Performance Component Models

I. Kolias, A. Alexiou, N. Aretakis, K. Mathioudakis

Laboratory of Thermal Turbomachines, School of Mechanical Engineering
National Technical University of Athens, Greece

ASME Turbo Expo 2018
11-15 June 2018, Oslo, Norway
Acknowledgements

This project has received funding from the

Clean Sky 2 Joint Undertaking
under the

European Union’s Horizon2020
research and innovation programme under grant agreement No. 686340

DEMOS

Developing advanced Engine Multi-disciplinary Optimization Simulations
DEMOS Objective

The project DEMOS objective is to develop a modular, flexible and extensible multi-disciplinary framework to undertake design space exploration and multidisciplinary optimization assessments of novel aircraft engine concepts:

- Development of advanced modelling and simulation tools for preliminary design studies of novel aircraft engine concepts
- Integration of tools and design processes under the same, commercial, and user-friendly modelling and simulation environment
Research State of the Art

Research tools in existence today:

- **Modular** and **iterative** philosophy (e.g. EDS\(^1\), TERA\(^2\))
- 0D, 1D models from **disparate sources** and/or **proprietary nature**
- **Expert-level user** to set-up the engine model and calculation sequence

Scope of Paper

In the context of DEMOS project, existing performance models for axial-flow, multistage compressors and turbines:

Aerodynamic Design Flowpath Sizing Weight Estimation Thermodynamic Performance New Turbomachinery Components

Same modelling level

HBR GTF with bypass VAN

Multi-Point Design @TO, CR, ToC

PROOSIS Simulation Environment

- Performance requirements
- Aerodynamic constraints
- Mechanical constraints
- Thermal constraints
Modelling Tool

- Object-Oriented
- Steady State
- Transient
- Mixed-Fidelity
- Multi-Disciplinary
- Distributed
- Multi-Point Design
- Off-Design
- Test Analysis
- Diagnostics
- Sensitivity
- Optimization
- Deck Generation
- Version Control

PROOSIS (PRopulsion Object-Oriented SImulation Software)
Contents

Methodology

1. Performance–Aerodynamics Integration
2. Aerodynamic Design & Flowpath Sizing
3. Validation Cases

Application Example

1. The HBR GTF Engine Model with Bypass VAN
2. The MPD Structure
3. MPD Optimization Runs
4. Design Space Exploration Results
5. Engine Flowpath Visualization

Summary & Conclusions
Methodology

1. Performance–Aerodynamics Integration
2. Aerodynamic Design & Flowpath Sizing
3. Validation Cases

Application Example

1. The HBR GTF Engine Model with Bypass VAN
2. The MPD Structure
3. MPD Optimization Runs
4. Design Space Exploration Results
5. Engine Flowpath Visualization

Summary & Conclusions
Performance–Aerodynamics Integration

- **Consistent and single-step preliminary design procedure**
- No need for continuous data interchange between 0D and 1D
- Mathematical models @component and @engine level remain unchanged
- Same level of robustness and speed of execution as for 0D models
Aerodynamic Design & Flowpath Sizing

The aerodynamic design is accomplished through:

- **Stage-by-stage, mean-line** calculation with variable gas properties
- Possibility for different mean-line distributions
- Possibility to specify different flow coefficient (ϕ), stage loading (ψ), and stage reaction (Λ) distributions to establish velocity triangles @ D_{m}; To establish flow quantities @ D_{h} + @ D_{t} the free vortex flow assumption is used
- Aerothermodynamic calculations accounting for compressor bleeds
- Aerothermodynamic turbine design integrated with row-by-row cooling capability

After the aerodynamic design has been completed and the stagewise D_{h} + D_{t} are known:

- Axial sizing of component stages is performed assuming linear distribution of first and last stage blade AR and axial gapping and a simple geometrical concept\(^3\)
- Component overall flowpath geometry is established by axial superposition of component stages

✓ Both aerodynamic design + flowpath sizing use only a small number of physical and geometrical inputs

Calculation of stagewise isentropic efficiency (η):

Losses methods

Lewis’⁴ method for compressor stages:

$$
\eta = 1 - \frac{1}{2\psi} \left(\zeta_R \left[\phi^2 + \left(\Lambda + \frac{\psi}{2} \right)^2 \right] + \zeta_S \left[\phi^2 + \left(1 - \Lambda + \frac{\psi}{2} \right)^2 \right] \right)
$$

Glassman’s⁵ method for uncooled turbine stages:

$$
\eta_{\text{uncooled}} = \frac{1}{1 + \frac{1}{2} A\psi}
$$

Semi-empirical methods

Glassman’s⁶ method for compressor stages:

$$
\bar{f}(\text{PR}, \eta_p, \eta) = 0
$$

Aungier’s⁷ method for uncooled turbine stages:

$$
\eta_{\text{uncooled}} = \text{TF} \times \left[\eta_{\text{optimum}} - K (\phi - \phi_{\text{optimum}})^2 \right]
$$

Glassman’s⁸ correction for cooled turbine stages:

$$
\eta_{\text{cooled}} = (1 - \delta_R m_R - \delta_S m_S) \times \eta_{\text{uncooled}}
$$

Other ways to establish component overall efficiency:

- Directly imposed
- **Samuelsson et al.**’s⁹ method for overall polytropic efficiency (η_p) estimation:

$$
\eta_p = f \left(\text{Component Size}, \text{Entry Into Service Year}, \text{Reynolds Number}, \text{Stage Loading} \right)
$$

Validation Cases

Compressor component

- NASA/GE E³ HP Compressor was used9,10
- 10-Stage
- High-speed
- High-aerodynamic loading
- Efficiency goal: 85.7%

Turbine component

- NASA/GE E³ LP Turbine Block II Scaled Air-Model was used11
- 5-Stage
- High-aerodynamic loading
- Measured efficiency: 92.0%

Compressor component

<table>
<thead>
<tr>
<th>Method</th>
<th>Calculated Efficiency</th>
<th>Relative Error from Goal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lewis (Losses)</td>
<td>85.01%</td>
<td>-0.81%</td>
</tr>
<tr>
<td>Glassman cur.</td>
<td>84.41%</td>
<td>-1.51%</td>
</tr>
<tr>
<td>Glassman adv.</td>
<td>86.51%</td>
<td>+0.95%</td>
</tr>
</tbody>
</table>

Turbine component

<table>
<thead>
<tr>
<th>Method</th>
<th>Calculated Efficiency</th>
<th>Relative Error from Measured</th>
</tr>
</thead>
<tbody>
<tr>
<td>Glassman (Losses)</td>
<td>91.38%</td>
<td>-0.68%</td>
</tr>
<tr>
<td>Aungier (TF=1)</td>
<td>89.02%</td>
<td>-3.24%</td>
</tr>
</tbody>
</table>

✓ Sufficient agreement, using existing turbomachinery components that have been through all the stages of the development course.
Application Example

Methodology

1. Performance–Aerodynamics Integration
2. Aerodynamic Design & Flowpath Sizing
3. Validation Cases

Application Example

1. The HBR GTF Engine Model with Bypass VAN
2. The MPD Structure
3. MPD Optimization Runs
4. Design Space Exploration Results
5. Engine Flowpath Visualization

Summary & Conclusions
The HBR GTF Engine Model with Bypass VAN

1. Constant D_h
2. Constant ψ
3. Linear ϕ
4. Specified $\alpha_1 \rightarrow \Lambda$
5. Losses method for η

- 1. Constant D_m
- 2. Specified stage Δh_t
- 3. Linear ϕ
- 4. Specified $\alpha_1 \rightarrow \Lambda$
- 5. Losses method for η

- Linear D_m
- Constant ψ
- $\Lambda = 0.5$ (symmetrical velocity triangles)
- Aungier’s method for η

- $\eta_p = f(FPR)^{12}$

- ✓ 1_G_4_8_2_3
- ✓ Fixed fan diameter
- ✓ Fixed sFN @ToC
- ✓ Off-design performance from suitable maps scaled accordingly during design calculation

The MPD Structure

ENGINE MODEL → **MULTI-POINT DESIGN (MPD)** → **DEFINE OPERATING POINTS** → **SELECT VARIABLES TO BE DESIGNED** → **FORMULATE CLOSURE EQUATIONS** → **SOLVE EXTENDED MATHEMATICAL PROBLEM**

Mathematical model boundaries at every OP (e.g.):
- Fuel mass flow rate (to match specified engine thrust) @ToC, TO, CR
- VAN % area change (to match VAN operability criterion) @ToC, TO, CR

Component attributes at individual OPs (e.g.):
- Scaling factors of all turbomachinery maps @ToC
- HPT cooling flow fractions for all blading rows @TO
- FN = Specified FN @ToC, TO, CR
- BPR, FPR, OPR, nPR = (Calculated or specified) BPR, FPR, OPR, nPR @ToC
- For compressors: $\eta_p = $ (Calculated or specified) η_p @CR
- For turbines: $\eta = $ (Calculated or specified) η @CR

ToC, TO, CR (set flight and ambient conditions)
Turbomachinery efficiencies $@CR$ are established through three different methods:

- **Method-1**: Aerodynamic design
- **Method-2**: Samuelsson et al.
- **Method-3**: Constant values

Constraints

- **OPR**:
 - $\text{HPC CDT} @ToC \leq \text{CDT}_{\text{max}} = 950 \text{ K}$
 - $\text{HPC LSBH} \geq \text{LSBH}_{\text{min}} = 13 \text{ mm}$

- **BPR**:
 - $\text{TET} @ToC \leq \text{TET}_{\text{max}} = 1850 \text{ K}$

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Method-1</th>
<th>Method-2</th>
<th>Method-3</th>
</tr>
</thead>
<tbody>
<tr>
<td>OPR [-]</td>
<td>52.00</td>
<td>53.55</td>
<td>55.05</td>
</tr>
<tr>
<td>BPR [-]</td>
<td>12.22</td>
<td>13.07</td>
<td>13.27</td>
</tr>
<tr>
<td>FPR [-]</td>
<td>1.427</td>
<td>1.460</td>
<td>1.453</td>
</tr>
<tr>
<td>nPR [-]</td>
<td>0.443</td>
<td>0.383</td>
<td>0.500</td>
</tr>
<tr>
<td>EP13 [-]</td>
<td>0.948</td>
<td>0.950</td>
<td>0.924</td>
</tr>
<tr>
<td>EP25 [-]</td>
<td>0.914</td>
<td>0.919</td>
<td>0.920</td>
</tr>
<tr>
<td>EP3 [-]</td>
<td>0.905</td>
<td>0.917</td>
<td>0.925</td>
</tr>
<tr>
<td>E45 [-]</td>
<td>0.924</td>
<td>0.920</td>
<td>0.921</td>
</tr>
<tr>
<td>E5 [-]</td>
<td>0.933</td>
<td>0.952</td>
<td>0.946</td>
</tr>
<tr>
<td>Transfer Efficiency [-]</td>
<td>0.874</td>
<td>0.882</td>
<td>0.859</td>
</tr>
<tr>
<td>Core Efficiency [-]</td>
<td>0.559</td>
<td>0.567</td>
<td>0.572</td>
</tr>
<tr>
<td>Propulsive Efficiency [-]</td>
<td>0.804</td>
<td>0.817</td>
<td>0.816</td>
</tr>
<tr>
<td>SFCi [g/kNs]</td>
<td>15.932</td>
<td>15.329</td>
<td>15.578</td>
</tr>
<tr>
<td>CDT [K]</td>
<td>950.0</td>
<td>950.0</td>
<td>950.0</td>
</tr>
<tr>
<td>TET [K]</td>
<td>1760.6</td>
<td>1790.9</td>
<td>1850.0</td>
</tr>
<tr>
<td>VAN change [%]</td>
<td>8.24</td>
<td>6.68</td>
<td>6.98</td>
</tr>
<tr>
<td>W [kg]</td>
<td>2594</td>
<td>2622</td>
<td>2496</td>
</tr>
<tr>
<td>Gear ratio [-]</td>
<td>2.80</td>
<td>2.60</td>
<td>2.65</td>
</tr>
<tr>
<td>HPC LSBH [mm]</td>
<td>16.2</td>
<td>13.9</td>
<td>16.4</td>
</tr>
</tbody>
</table>
Design Space Exploration Results

Engine design space is explored through **parametric MPD runs** varying (FPR, OPR) @ToC, and each time (BPR, nPR) @ToC are again optimized for minimum SFCi @CR:

- Design spaces of similar shape
- Boundaries and optimum solution depend on method to establish turbomachinery efficiencies @CR
- Installed performance differences up to ~3% between different methods
Engine Flowpath Visualization

Through the aerothermodynamic design is possible to visualize the engine flowpath geometry:

- Method-1: Geometry calculated for optimum (OPR, FPR, BPR, nPR) @ToC = (52.00, 1.427, 12.22, 0.443)
- Method-3: Geometry calculated for optimum (OPR, FPR, BPR, nPR) @ToC = (55.05, 1.453, 13.27, 0.500)
- Method-1 to establish turbomachinery efficiencies @CR

Constrained MPD and flowpath sizing calculations < 3 seconds in a typical home desktop PC
Summary & Conclusions

Methodology
1. Performance–Aerodynamics Integration
2. Aerodynamic Design & Flowpath Sizing
3. Validation Cases

Application Example
1. The HBR GTF Engine Model with Bypass VAN
2. The MPD Structure
3. MPD Optimization Runs
4. Design Space Exploration Results
5. Engine Flowpath Visualization

Summary & Conclusions
Summary & Conclusions

- A consistent, single step modelling process was presented that combines turbomachinery 0D thermodynamic performance with 1D aerodynamic design and flowpath sizing, at the same modelling level and under the same user-friendly simulation environment.

- Design point efficiency of turbomachinery components can be established using losses or semi-empirical correlations, through a stage-by-stage design approach.

- Constrained MPD Optimization and Parametric runs were then carried out on a HBR GTF with bypass VAN, allowing performance requirements and aerodynamic, thermal, and structural constraints to be accounted for simultaneously at three different operating conditions.

 - MPD runs showed that the optimum design in terms of installed performance as well as engine geometry depend on the method for obtaining the turbomachinery design-point efficiencies.

 - MPD runs also showed that installed performance could present significant differences between the different methods used to establish turbomachinery design-point efficiencies.

- Future work includes the integration of modules for noise, emissions, lifing, and maintenance calculations, and the simultaneous optimization of both aircraft and engine at mission level.
Direct Integration of Axial Turbomachinery Preliminary Aerodynamic Design Calculations in Engine Performance Component Models