ASSESMENT OF SOLAR STEAM INJECTION IN GAS TURBINES

C. Kalathakis Research Assistant

N. Aretakis
Assistant Professor

I. Roumeliotis
Assistant Professor

A. Alexiou Senior Researcher K. Mathioudakis
Professor

Laboratory of Thermal Turbomachines National Technical University of Athens

Motivation & Objectives

- Conventional hybridization
 - Energy production penalty
 - Air extraction difficulties
 - Burner cooling difficulties

- Solar STIG
 - Increased produced energy
 - Fewer construction difficulties
 - STIG: Used technology
 - o Solar steam: Used technology

- □ MODELLING
- **□** SOLAR STEAM PRODUCTION METHOD
 - Design Specifications & Operating Scenario
 - Performance Simulation
- □ SOLAR STEAM IN A STIG ENGINE
 - Design Specifications & Operating Scenario
 - Performance Simulation
 - Change Of Operating Point
- □ SUMMARY & CONCLUSIONS

□ MODELLING

- □ SOLAR STEAM PRODUCTION METHOD
 - Design Specifications & Operating Scenario
 - Performance Simulation
- □ SOLAR STEAM IN A STIG ENGINE
 - Design Specifications & Operating Scenario
 - Performance Simulation
 - Change Of Operating Point
- SUMMARY & CONCLUSIONS

Modeling

- Modeling with PROOSIS: an object oriented environment
- TURBO: Brayton cycle components
- WAST: Rankine cycle components
- SOLAR: Solar part components

Modeling

Solar-only STIG

Solar STIG with troughs

- MODELLING
- □ SOLAR STEAM PRODUCTION METHOD
 - Design Specifications & Operating Scenario
 - Performance Simulation
- □ SOLAR STEAM IN A STIG ENGINE
 - Design Specifications & Operating Scenario
 - Performance Simulation
 - Change Of Operating Point
- **□** SUMMARY & CONCLUSIONS

Solar Steam Production Method

- Tower
 - ODirect steam generation
 - **Engine on tower**
 - Used technology for Rankine cycles
 - **OHigher investment cost**

- Troughs
 - ODirect steam generation experimental stage
 - **Engine on ground**
 - **OLower investment cost**

Design Specifications & Operating Scenario

- Fuel-only engine: 5MW, TIT = 1000°C, PR = 10
- Solar field / Water-Steam
 - o Steam pressure: 35 bar
 - Steam temperature: Saturated steam
 - Receiver/troughs outlet: SAR=12% @ 800W/m² Summer solstice

- Operating scenario
 - \circ Maximum power \rightarrow TIT constant
 - Yearly continuous baseload operation
- Performance simulation
 - \circ Hourly simulation \rightarrow Integration \rightarrow Annual performance

Performance Simulation

Annual Performance Difference Between Solaronly STIG & Fuel-only Engines

- Tower less season-depended
- Solar STIG results to
 - Augmented produced energy (higher mass flow, composition change)
 - o Augmented fuel consumption (added mass with higher Cp)

- □ MODELLING
- □ SOLAR STEAM PRODUCTION METHOD
 - Design Specifications & Operating Scenario
 - Performance Simulation
- □ SOLAR STEAM IN A STIG ENGINE
 - Design Specifications & Operating Scenario
 - Performance Simulation
 - Change Of Operating Point
- **□** SUMMARY & CONCLUSIONS

Addition Of Solar Steam

performance model

- 1. Fuel-only engine
- 2. Conventional STIG (+HRSG)
- 3. Solar STIG (+Solar evaporator)

Design Specifications & Operating Scenario

- Fuel-only engine: 5MW, TIT = 1000°C, PR = 10
- Heat Recovery Steam Generator
 - o Inlet water: 35 bar, 15°C, Outlet steam: 700K
 - \circ Tpinch = 20°C, Tapproach = 15°C
 - Water mass flow → Saturated steam @ evaporator outlet & SAR=6%
- Heliostat field
 - ○SAR=12% @ 800W/m² Summer solstice
- Operating scenario
 - **Maximum power** → TIT constant
 - Yearly continuous baseload operation
- Performance simulation
 - \circ Hourly simulation \rightarrow Integration \rightarrow Annual performance

Performance Simulation

Performance Simulation

Performance difference between solar and conventional STIG engines for a winter day

- Higher energy production, fuel and water consumption
- Similar results if troughs were used (Direct Steam Generation)
- Troughs with oil could be used:
 - Inferior performance (addition of oil-water heat exchanger)
 - o Already used technology in commercial state

Change Of Operating Point

Operating Points On Compressors Map

- Steam injection & chocked turbine with constant TIT
 - \rightarrow higher PR
- High SAR may result to surge
- In this study:
- \circ SAR=6%
 - \rightarrow SM \downarrow ~25% from fuel-only operation
- ○SAR=12%
 - \rightarrow SM \downarrow ~50% from fuel-only operation

- MODELLING
- STEAM PRODUCTION METHOD
 - Design Specifications & Operating Scenario
 - Performance Simulation
- □ SOLAR STEAM IN A STIG ENGINE
 - Design Specifications & Operating Scenario
 - Performance Simulation
 - Change Of Operating Point
- ☐ SUMMARY & CONCLUSIONS

Summary – Conclusions

- □ Solar STIG studied as an alternative to conventional solar hybridization
 - Based on proven technologies (STIG & solar steam)
 - Fewer GT modifications
 - Augmented energy production
- ☐ Steam generation method: Tower scheme performs better than troughs
- ☐ Assessment of performance and operability on addition of solar steam into an already STIG engine
 - Produced energy, fuel and water consumption increase
 - Surge margin decreases
 - Similar results if troughs were used

THANK YOU

Laboratory of Thermal Turbomachines National Technical University of Athens

