ASSESSMENT OF SOLAR STEAM INJECTION IN GAS TURBINES

C. Kalathakis
Research Assistant

N. Aretakis
Assistant Professor

I. Roumeliotis
Assistant Professor

A. Alexiou
Senior Researcher

K. Mathioudakis
Professor

Laboratory of Thermal Turbomachines
National Technical University of Athens
Motivation & Objectives

• Conventional hybridization
 o Energy production penalty
 o Air extraction difficulties
 o Burner cooling difficulties

• Solar STIG
 o Increased produced energy
 o Fewer construction difficulties
 o STIG: Used technology
 o Solar steam: Used technology
Contents

- MODELLING
- SOLAR STEAM PRODUCTION METHOD
 - Design Specifications & Operating Scenario
 - Performance Simulation
- SOLAR STEAM IN A STIG ENGINE
 - Design Specifications & Operating Scenario
 - Performance Simulation
 - Change Of Operating Point
- SUMMARY & CONCLUSIONS
Contents

- MODELLING
 - SOLAR STEAM PRODUCTION METHOD
 - Design Specifications & Operating Scenario
 - Performance Simulation
 - SOLAR STEAM IN A STIG ENGINE
 - Design Specifications & Operating Scenario
 - Performance Simulation
 - Change Of Operating Point
- SUMMARY & CONCLUSIONS
Modeling

- Modeling with PROOISIS: an object oriented environment
- TURBO: Brayton cycle components
- WAST: Rankine cycle components
- SOLAR: Solar part components
Modeling

Solar-only STIG

Solar STIG with troughs
Contents

- MODELLING

- SOLAR STEAM PRODUCTION METHOD
 - Design Specifications & Operating Scenario
 - Performance Simulation

- SOLAR STEAM IN A STIG ENGINE
 - Design Specifications & Operating Scenario
 - Performance Simulation
 - Change Of Operating Point

- SUMMARY & CONCLUSIONS
Solar Steam Production Method

- **Tower**
 - Direct steam generation
 - Engine on tower
 - Used technology for Rankine cycles
 - Higher investment cost

- **Troughs**
 - Direct steam generation
 - Experimental stage
 - Engine on ground
 - Lower investment cost
• Fuel-only engine: 5MW, TIT = 1000°C, PR = 10

• Solar field / Water-steam
 o Steam pressure: 35 bar
 o Steam temperature: Saturated steam
 o Receiver/troughs outlet: SAR=12% @ 800W/m² Summer solstice

• Operating scenario
 o Maximum power → TIT constant
 o Yearly continuous baseload operation

• Performance simulation
 o Hourly simulation → Integration → Annual performance
Performance Simulation

Annual Performance Difference Between Solar-only STIG & Fuel-only Engines

<table>
<thead>
<tr>
<th>Difference [%]</th>
<th>Tower</th>
<th>Troughs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Δeff_f</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ΔFuel</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ΔE</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **Tower less season-dependent**
- **Solar STIG results to**
 - Augmented produced energy (higher mass flow, composition change)
 - Augmented fuel consumption (added mass with higher Cp)
Contents

- MODELLING
- SOLAR STEAM PRODUCTION METHOD
 - Design Specifications & Operating Scenario
 - Performance Simulation
- SOLAR STEAM IN A STIG ENGINE
 - Design Specifications & Operating Scenario
 - Performance Simulation
 - Change Of Operating Point
- SUMMARY & CONCLUSIONS
Addition Of Solar Steam

1. Fuel-only engine
2. Conventional STIG (+HRSG)
3. Solar STIG (+Solar evaporator)
• Fuel-only engine: 5MW, TIT = 1000°C, PR = 10
• Heat Recovery Steam Generator
 o Inlet water: 35 bar, 15°C, Outlet steam: 700K
 o Tpinch = 20°C, Tapproach = 15°C
 o Water mass flow → Saturated steam @ evaporator outlet & SAR=6%
• Heliostat field
 o SAR=12% @ 800W/m² Summer solstice
• Operating scenario
 o Maximum power → TIT constant
 o Yearly continuous baseload operation
• Performance simulation
 o Hourly simulation → Integration → Annual performance
Annual Performance Difference Between Solar & Convetional STIG Engines

<table>
<thead>
<tr>
<th></th>
<th>Difference [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>ΔE</td>
<td>5</td>
</tr>
<tr>
<td>ΔFuel</td>
<td>2</td>
</tr>
<tr>
<td>Δeff_f</td>
<td>1</td>
</tr>
<tr>
<td>Δwater</td>
<td>30</td>
</tr>
</tbody>
</table>

Performance Simulation
• Higher energy production, fuel and water consumption
• Similar results if troughs were used (Direct Steam Generation)
• Troughs with oil could be used:
 o Inferior performance (addition of oil-water heat exchanger)
 o Already used technology in commercial state
• Steam injection & chocked turbine with constant TIT → higher PR
• High SAR may result to surge
• In this study:
 ○ SAR=6% → SM ↓ ~25% from fuel-only operation
 ○ SAR=12% → SM ↓ ~50% from fuel-only operation
Contents

- MODELLING
- STEAM PRODUCTION METHOD
 - Design Specifications & Operating Scenario
 - Performance Simulation
- SOLAR STEAM IN A STIG ENGINE
 - Design Specifications & Operating Scenario
 - Performance Simulation
 - Change Of Operating Point
- SUMMARY & CONCLUSIONS
Solar STIG studied as an alternative to conventional solar hybridization

- Based on proven technologies (STIG & solar steam)
- Fewer GT modifications
- Augmented energy production

Steam generation method: Tower scheme performs better than troughs

Assessment of performance and operability on addition of solar steam into an already STIG engine

- Produced energy, fuel and water consumption increase
- Surge margin decreases
- Similar results if troughs were used
THANK YOU

Laboratory of Thermal Turbomachines
National Technical University of Athens