Contra-Rotating Propeller Modelling For Open Rotor Performance Simulations by Alexiou, Frantzis, Aretakis, Riziotis, Roumeliotis, Mathioudakis

National Technical University of Athens

- The Open Rotor configuration enables ultra-high bypass ratio and high propulsive efficiency thus reducing fuel burn and emissions compared to an equivalent thrust turbofan
- For open rotor preliminary design performance evaluations, 0-D cycle models are needed employing CRP performance maps for robustness and fast execution
- Currently in the public literature, CRP performance models do not accurately represent the **physics** of a CRP system and or do not account for all the independent parameters that govern the operation of the CRP system

Develop a **methodology** for modelling contra-rotating propellers (CRP) for engine performance calculations:

- 1. Generate CRP performance characteristics taking into account the effects of induced velocities, flight Mach number, speed ratio and blade pitch angles
- **2. Develop** a mathematical model for CRP that uses these characteristics
- **3. Integrate** the CRP component in an open rotor engine performance model and perform design and off-design simulations

Contents

□ FREE-WAKE LIFTING SURFACE MODEL

- o Theoretical Background
- o Implementation
- o Indicative Results
- **CRP PERFORMANCE MODEL**
 - o Simulation Environment PROOSIS
 - o CRP Performance Maps
 - o CRP PROOSIS Component
- **CROR ENGINE MODEL**
- **ENGINE CONTROL STUDIES**
- **SUMMARY & CONCLUSIONS**

Contents

□ FREE-WAKE LIFTING SURFACE MODEL o Theoretical Background o Implementation o Indicative Results **CRP PERFORMANCE MODEL o Simulation Environment - PROOSIS** o CRP Performance Maps **o CRP PROOSIS Component** CROR ENGINE MODEL **ENGINE CONTROL STUDIES** SUMMARY & CONCLUSIONS

The in house code **GENUVP** is a potential flow solver combining a panel representation of the solid boundaries (blades) with a vortex particle representation of the wake.

GENUVP Application Examples

GENUVP is used in the aerodynamic analysis of rotor/wing problems

6deg, descent 33m/s, MR, r/R=0.87 GENUVP Measurements 0.8 0.6 0.4 0.2 0_Ò 90 180 270 360 psi

Wind turbine aeroelastic simulation

Aeroelastic analysis of Helicopter rotor

CRP Geometry in GENUVP (based on SR-7A)

Single Propeller Wake – Panoramic View

SP Power Coefficient: M=0.7

SP Thrust Coefficient: M=0.7

CR Propeller Wake – Panoramic View

CR Propeller Wake – Meridional View

Radial distribution of incidence angle

Radial distribution of Helical Mach number

Radial distribution of Induced Axial Velocity

Radial distribution of Induced Angular Velocity

CRP Power Coefficient: M=0.7, NR=1

CRP Thrust Coefficient: M=0.7, NR=1

Contents

A

FREE-WAKE LIFTING SURFACE MODEL

- o Theoretical Background
- o Implementation
- o Indicative Results

CRP PERFORMANCE MODEL Simulation Environment - PROOSIS CRP Performance Maps CRP PROOSIS Component CROR ENGINE MODEL ENGINE CONTROL STUDIES

SUMMARY & CONCLUSIONS

Simulation Platform

PROOSIS (PRopulsion Object-Oriented SImulation Software)

- > Object-Oriented
- Steady State
- Transient
- Mixed-Fidelity
- Multi-Disciplinary
- Distributed
- Multi-point Design
- ➢ Off-Design
- Test Analysis
- Diagnostics
- > Parametric
- Sensitivity
- > Optimisation
- Deck Generation

Model Construction

Generation of Propeller Maps

CRP Propeller Map Reading

PROOSIS CRP Component

Contra-Rotating Turbine Modelling

Contents

FREE-WAKE LIFTING SURFACE MODEL

- o Theoretical Background
- o Implementation
- o Indicative Results

CRP PERFORMANCE MODEL

- **o Simulation Environment PROOSIS**
- o CRP Performance Maps
- o CRP PROOSIS Component

CROR ENGINE MODEL

ENGINE CONTROL STUDIES

SUMMARY & CONCLUSIONS

CROR Engine PROOSIS Model

Design Point Definition (ToC)

Component	Parameter [units]	Value
InEng	W [kg/s]	17.5
CmpL	PR [-]	4.16
	eff [-]	0.88
CmpH	PR [-]	4.46
	eff [-]	0.87
Brn	TET [K]	1500
	effB [-]	0.995
	Pressure loss [%]	6
TrbH	eff [-]	0.843
TrbL	eff [-]	0.87

Parameter [units]	Value
Front propeller thrust [kN]	10.55
Back propeller thrust [kN]	11.65
Nozzle Thrust [kN]	1.05
Net Thrust [kN]	23.3
Specific Fuel Consumption [g/(kN·s)]	14.4
Nozzle pressure ratio [-]	1.22
Propeller speed ratio [-]	1.02
Propeller torque ratio [-]	0.977
J ₁ [-] J ₂ [-]	2.9 3.1
CP ₁ [-] CP ₂ [-]	1.6 2.2
CT ₁ [-] CT ₂ [-]	0.43 0.60
CRT PR	4.95

OD Performance for Different Blade Settings

Operating line on CRP map

Contents

FREE-WAKE LIFTING SURFACE MODEL

- o Theoretical Background
- o Implementation
- o Indicative Results

CRP PERFORMANCE MODEL

- **o Simulation Environment PROOSIS**
- o CRP Performance Maps
- o CRP PROOSIS Component
- **CROR ENGINE MODEL**

ENGINE CONTROL STUDIES

SUMMARY & CONCLUSIONS

OD Performance for Different Control Strategies

Propeller Blade Angle Variation

Propeller Speed Variation

Operating lines on CRT map

Operating line on CRP map

Contents

FREE-WAKE LIFTING SURFACE MODEL

- o Theoretical Background
- o Implementation
- o Indicative Results

CRP PERFORMANCE MODEL

- **o Simulation Environment PROOSIS**
- o CRP Performance Maps
- o CRP PROOSIS Component
- **CROR ENGINE MODEL**
- **ENGINE CONTROL STUDIES**

SUMMARY & CONCLUSIONS

- An approach to contra-rotating propeller performance modelling has been presented, based on a set of individual propeller maps generated by a free-wake lifting surface model of a specific CRP system for different values of Mach number, speed ratio and blade pitch angles.
- A dedicated CRP component model is developed in an engine performance simulation environment that uses these maps to calculate CRP performance.
- This CRP component is used to create a direct-drive open rotor engine performance model. The capabilities of the approach are demonstrated through design point and off-design engine studies while its flexibility is exemplified with a study of the effects of propeller blade control strategy on engine performance.

- The accuracy of the presented approach can be further improved through:
 - more accurate values of the aerodynamic coefficients (CL and CD) and
 - extending the range of parameters simulated through the lifting surface model in order to reduce map interpolation and extrapolation errors.

Significant computer time savings could be achieved through:

- the use of a particle mesh approach for the far wake part downstream of the BP
- o code optimization and parallelization

- The CRP component developed can be used to study both DDOR and GOR configurations and is suitable for a variety of performance calculations at component, engine or aircraft mission analysis level.
- Using the lifting surface model, maps for different combinations of propeller designs can be generated thus enabling multidisciplinary design optimization studies.
- Direct integration of GENUVP in PROOSIS as an external object will offer an advantage to the map approach both in terms of execution speed as well as modelling accuracy.

감사합니다

THANK YOU