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Component Zooming: execution of higher order analysis 

code and integration of its results back in the 0-D engine cycle  

allows for: 

 more accurate physics  & geometry based estimates of 

component performance 

 complex phenomena & component design change studies 

 

Different methods exist: 

1. De-Coupled Approach 

2. Semi-Coupled Approach 

3. Fully-Coupled Approach 
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 Have in hand a tool that can efficiently be used to address: 

  gas turbine installation effects (e.g. distorted inlet  flow) 

  compressor/fan design optimization 

  engine health monitoring (through simulation of 

fouling/erosion/tip clearance)  

 

 Build a computational tool combining an in-house 

Streamline Curvature (SLC) through flow solver with a 

commercial 0-D performance simulation tool. 

 

 Follow the fully-coupled approach between the two solvers 

without affecting conventional model construction and 

simulation case definition. 
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Through Flow Solver 

SOCRATES: Synthesis Of Correlations for the Rapid 

Assessment of Turbomachine Engine Systems 

Inviscid 

solution 

core 

Empirical 

models 

Viscous 

equivalent 

flow 

solution 

Compressor 

Geometry 

Boundary 

Conditions 

Produces two dimensional flow solution based on 

Streamline Curvature (SLC) method. 
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Inviscid Solution 

 Full radial equilibrium equation considered along quasi-normal curves. 

 Pseudo force terms included. 

 Incorporation of dynamic convergence schemes with variable 

tolerance.  

Empirical Models 

 Profile loss: Bucket shaped curves (incidence vs profile loss) 

positioned based on flow Mach number level (Aungier)  

 Shock loss: Simplified loss model based on frozen shock pattern 

(Swan). 

Deviation angle: Separate individual components considered due to off 

– design operation superimposed on the minimum loss value (Aungier)  

 Boundary layer: Simplified end wall boundary layer model. Boundary 

layer shape parameters are defined from an integral approach based 

on meridional velocity along the boundary layer edge (Jansen & 

Moffatt) 
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Validation – Geometry 
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Validation – Performance Maps 
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Validation – Performance Maps 
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Validation - Velocity Profiles 
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Socrates – Input/Output 

Input 

 number of flow stream lines. 

 number of points when defining a radial 

profile of a property at component inlet. 

 number of stages.  

 number of stator and rotor blades of 

each stage. 

 radial location (as a percentage) of 

points in a profile. 

 the stator/rotor stagger angle radial 

distributions.  

 the inlet air mass flow rate. / outlet 

static pressure 

 the fan rotational speed. 

 the inlet flow temperature, pressure and 

angle radial distributions.  

Output 

 Radial distribution of pressure. 

 Radial distribution of temperature. 

number of stages.  

 Radial distribution of meridional velocity 

component. 

 Radial distribution of absolute velocity. 

 Radial distribution of axial Mach 

number.  

 Radial distribution of absolute Mach 

number 

 Radial distribution of density. 

 Radial distribution of flow angle 

 Streamtube mass flow rate 

 Streamtube cross sectional area.  

 A convergence flag is also returned to 

warn the user in case of non-

convergence 
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 Transient 
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 Distributed 

 Multi-point Design 

 Off-Design 
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 Optimisation 

 Deck Generation 

18 

Simulation Platform 

PROOSIS (PRopulsion Object-Oriented SImulation Software) 
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Model Construction 

Compressor 

BETA map 

TURBO library of Gas 

Turbine Engine 

Components 

Engine configuration 

constructed graphically 

Turbine 

ZETA map 
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Mathematical Model 

820 equations + 410 input data 

1 boundary variable (fuel flow rate) 

8 algebraic variables (inlet flow rate, BPR, BETA/ZETA) 

2 dynamic variables (shaft rotational speeds) 

10×10 Jacobian matrix 
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"FORTRAN" FUNCTION NO_TYPE SOCRATES_SLL ( 

 IN INTEGER NoOfBoundaryPointsIn,   

 IN INTEGER NoOfTimeStepsIn,   

 IN REAL SplitterRadiusIn,    

 ... 

 OUT REAL StrlineRadialPositionOut[],   

 OUT REAL CompressorAbsTotPressureRatioOut,  

 OUT REAL CompressorIsentrEffOut,   

 ...       

 ) IN "SOCRATES_SLL.lib"  

SOCRATES from executable stand-alone application 

→ subroutine with specific interface as static library 

SOCRATES defined in PROOSIS as external FORTRAN function 
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Component Fan2D IS_A Fan 

 

 SOCRATES_SLL(…) 

 MassAverage (…) 

 

END COMPONENT 

Simple 2-D component definition based on PROOSIS abstraction 

and inheritance capabilities 

Use component to: 

 Generate map 

 Parametric studies 

 Optimize geometry 
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Mathematical Model 

1 boundary variable  

7 algebraic variables  

2 dynamic variables  

9×9 Jacobian matrix 
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Component Parameter Value 

InEng W [kg/s] 30 

CmpFan 

N [rpm] 14500 

BPR 3.3 

Inner fan eff [-] 0.914 

Inner fan PR [-] 1.492 

Outer fan eff [-] 0.900 

Outer fan PR [-] 1.500 

CmpL 
PR [-] 1.3 

eff [-] 0.87 

CmpH 

PR [-] 6.5 

eff [-] 0.85 

N [rpm] 35000 

Brn 
eff [-] 0.99 

Pressure loss [%] 3.5 

TrbH eff [-] 0.86 

TrbL eff [-] 0.88 

Perf FN [N] 9000 
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Parameter Value 

TrbH PR [-] 3.1 

TrbL PR [-] 2.4 

WF [kg/s] 0.115 

TET [K] 1292 

SFC [g/(kN·s)] 12.82 
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 The integration of a stand-alone higher fidelity code in a 0-D 

engine performance simulation environment was presented 

through design point and off-design studies. The potential of 

the tool for advanced types of analysis is exemplified with a 

parametric study that calculates engine performance for 

different fan geometry settings.   

 The proposed approach does not affect the model building 

procedure and the logic of  the established mathematical 

formulation in existing performance simulations.  

 The method presented does not depend on the fan 

geometry and type of engine or performance and can be 

extended to cover other engine components in an engine 

performance simulation. 
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