Short and Long Range Mission Analysis for a Geared Turbofan with Active Core Technologies

A. Alexiou, N. Aretakis, I. Roumeliotis, K. Mathioudakis

Laboratory of Thermal Turbomachines National Technical University of Athens

Contents

□ INTRODUCTION

□ METHODOLOGY

- o Engine Performance
- o Aircraft Performance
- o NO_x Emissions
- o Noise
- **RESULTS**
 - o Engine Performance
 - o Aircraft Performance & NO_x Emissions
 - o Noise
 - o Sensitivity Analysis

SUMMARY & CONCLUSIONS

The engine contribution towards ACARE goals are:

- > 80% NO_x emissions reduction relative to CAEP/2 ICAO LTO cycle limits
 - 20% reduction in fuel consumption (and hence CO₂ emissions) per passenger-kilometre
- > 10 dB noise reduction per certification point compared to a year 2000 in service engine (e.g. CFM56, Trent 700).

High BPR \rightarrow gives higher Propulsive Efficiency, Lower Jet Noise

 $\textbf{Gear} \rightarrow \text{allow each LP component to run on optimum speed}$ in terms of efficiency, stage loading, stage count and noise

Short and Long Range Mission Analysis for a Geared Turbofan with Active Core Technologies A. Alexiou, N. Aretakis, I. Roumeliotis, K. Mathioudakis

Active Systems

 \rightarrow enable engine to be adjusted for optimum performance and safety at component or engine level according to its actual operating conditions or component/engine health status

 \rightarrow increases flexibility during the design phase since it is no longer required to base the design on a worst case scenario.

Short and Long Range Mission Analysis for a Geared Turbofan with Active Core Technologies A. Alexiou, N. Aretakis, I. Roumeliotis, K. Mathioudakis

Active Systems

 \rightarrow ACAC (Active Cooling Air Cooling) to minimize the air required for HPT cooling at cruise (increased engine efficiency)

 \rightarrow ACC (Active Clearance Control) for minimal tip clearance of HPC last stages

 \rightarrow ASC (Active Surge Control) to improve engine operability at part speed by air injection at front HPC stages

Short and Long Range Mission Analysis for a Geared Turbofan with Active Core Technologies A. Alexiou, N. Aretakis, I. Roumeliotis, K. Mathioudakis

•The high values of Turbine Entry Temperature and Overall Pressure Ratio of GTAC require low NOx combustion technology.

•For this reason NEWAC is investigating lean low NOx combustion with either a PERM or LDI fuel system, depending on the application (short and long range respectively).

PERM: Partial Evaporation & Rapid Mixing LDI:Lean Direct Injection

Short and Long Range Mission Analysis for a Geared Turbofan with Active Core Technologies A. Alexiou, N. Aretakis, I. Roumeliotis, K. Mathioudakis

7

 \succ In the present work, an integrated approach is followed to determine the fuel consumption, noise and NOx emissions of this novel engine concept for two different flight missions by coupling together different simulation codes.

For a short range mission (1000 km), a 140 kN take-off SLS thrust version of the GTAC engine is used while a 325 kN one is used for a long range mission (5500 km)

➤ The results are compared with corresponding ones for year-2000 in service engines of similar thrust ratings (baseline engines).

Short and Long Range Mission Analysis for a Geared Turbofan with Active Core Technologies A. Alexiou, N. Aretakis, I. Roumeliotis, K. Mathioudakis

Contents

□ INTRODUCTION

□ METHODOLOGY

- o Engine Performance
- o Aircraft Performance
- o NO_x Emissions
- o Noise
- **RESULTS**
 - o Engine Performance
 - o Aircraft Performance & NO_x Emissions
 - o Noise
 - o Sensitivity Analysis

SUMMARY & CONCLUSIONS

9

Module Interaction Diagram

Engine Performance (PROOSIS)

Aircraft Performance (CAMACM)

Mission Performance Analysis

 It covers all segments of a modern commercial aircraft's typical flight

• The engine model is externally supplied as an independent module.

 NO_x emissions calculated using the **Boeing Fuel Flow Method 2**

Since there are <u>no</u> ICAO data for GTAC engines then:

<u>Approach 1</u>: Assume same combustor technology as Baseline engines and a modified **P3T3** method:

$$\text{EINO}_{x,\text{GTAC}} = \text{EINO}_{x,\text{BASE}}(T_{3,\text{GTAC}}) \cdot \left[\frac{P_{3,\text{GTAC}}(T_{3,\text{GTAC}})}{P_{3,\text{BASE}}(T_{3,\text{GTAC}})}\right]^{0.5} \quad \text{Eq. 1}$$

<u>Approach 2</u>: Use publicly available correlations for new technology combustors such as:

EINO_x = 0.0075492 · T₄ ·
$$\left(\frac{P_3}{30.267985}\right)^{0.37}$$
 · $e^{\frac{1.8 \cdot T_3 - 1471}{345}}$ Eq. 2

or

EINO_x =
$$0.104 \cdot e^{\frac{T3}{185}} \cdot FAR^{1.32} \cdot P_3^{0.68} \cdot [\Delta P/P_3(\%)]^{-0.36}$$
 Eq. 3

Noise (AERONOISE)

Contents

□ INTRODUCTION

- □ METHODOLOGY
 - o Engine Performance
 - o Aircraft Performance
 - o NO_x Emissions
 - o Noise
- **RESULTS**
 - o Engine Performance
 - o Aircraft Performance & NO_x Emissions
 - o Noise
 - o Sensitivity Analysis

SUMMARY & CONCLUSIONS

Baseline Engines Performance

PARAMETER	BASESR	BASELR
BPR	5	5
OPR	29	36
W1 (kg/s)	360	920
FN (kN)	120	315
SFC (gr/kN3)	10.4	10.1

Main Cycle Parameters for Baseline Engines at **T/O SLS**

PARAMETER	BASESR	BASELR
Altitude (m)	10668	11500
Mach Number	0.78	0.82
FN (kN)	21.0	47.4
SFC (gr/kN·s)	17.5	17.0
W1 (kg/s)	134	306
BPR	5.2	5.2
OPR	26.6	32.4

Predicted Main Cycle Parameters for Baseline Engines at **Mid-Cruise** (ISA, installed)

Publicly available data have been used in order to ensure that the models are representative of in service engines with a technology level of year-2000.

SFC-FN variation of Baseline Engines at SLS

Short and Long Range Mission Analysis for a Geared Turbofan with Active Core Technologies A. Alexiou, N. Aretakis, I. Roumeliotis, K. Mathioudakis

GTAC Performance Model & Data

PARAMETER	GTAC SR			G	TAC LI	ł
Condition	T/O	ToC	CR	T/O	ToC	CR
Altitude (m)	0	10668	10668	0	10668	10668
Mach Number	0.25	0.78	0.78	0.25	0.82	0.82
ΔT ISA (K)	15	10	0	15	10	0
BPR	13.4	11.8	13.0	14.0	12.6	14.0
OPR	36.7	47.0	39.0	46.6	57.8	47.0
FN (kN)	100.9	28.1	22.0	252.1	67.4	51.2
W1 (kg/s)	522.2	216.2	207.9	1317.0	556.3	532.5

Comparison of Model Predictions and NEWAC Specifications for GTACSR

For both SR and LR applications, the agreement between model predicted and specified values is less than 2%.

Aircraft Performance

PARAMETER	SR	LR
Typical Pax No	150	295
MTOW (t)	77	233
No Engines		2
Wing Area (m ²)	122.6	361.6
Max Range (km)	5700	10500
Max Altitude (m)	11887	12497
Max Mach No.	0.82	0.86

Aircraft Characteristics

PARAMETER	SR	LR
Distance (km)	1000	5500
Cruise Altitude (m)	10668	11500
Cruise Mach No.	0.78	0.82
Payload (t)	10.8	13.5
Fuel Loaded (t)	7	50
Climb Coefficient	1	.2
Initial Climb Angle (°)	7.	.5

Main Mission Parameters

Typical aircrafts and missions for short and long range applications are modelled and simulated.

Overall Mission Results for Baseline Engines

BASESR								
Segment]	ſime	Fuel Burned NO _x			0 _x		
	min	%	kg	% Total	kg	%		
		Total				Total		
W&T	10.0	10.35	165.1	3.7	0.753	1.67		
T/O	0.4	0.41	63.3	1.42	1.291	2.86		
CL	17.8	18.43	1381.5	30.96	18.07	40.07		
CR	44.8	46.38	1941.2	43.5	17.819	39.51		
DE	23.6	24.43	911.6	20.43	7.164	15.89		
TOTAL	96.	.6 min	4462	4462.8 kg		4462.8 kg 45.097		97 kg
			BASELR	2				
W&T	10	2.47	431.5	1.08	2.285	0.41		
T/O	0.5	0.12	193.7	0.48	6.509	1.16		
CL	18.5	4.57	3985.3	9.96	95.185	16.9		
CR	350.3	86.54	33223.3	83.02	436.803	77.55		
DE	25.5	6.30	2186.8	5.46	22.439	3.98		
TOTAL	404	1.8 min	4002	0.6 kg	563.22	1 kg		

NOx production at cruise is not covered by regulations for emissions

SR (%)							
Segment	Fuel Burned	NOx	NOx	NOx			
		(Eq. 1)	(Eq. 2)	(Eq. 3)			
W&T	-35.25	-27.36	-87.92	-96.41			
T/O	-30.49	+5.58	-32.77	-35.24			
CL	-23.00	+20.23	-35.33	-48.88			
CR	-21.84	+15.75	-47.06	-65.45			
DE	-32.35	-14.48	-69.46	-85.02			
TOTAL	-24.97	+11.73	-46.19	-61.57			
		(%)					
W&T	-34.83	-32.34	-84.20	-94.97			
T/O	-32.27	-5.39	-43.80	-45.61			
CL	-26.61	+13.66	-38.33	-45.40			
CR	-25.40	+7.88	-52.30	-68.02			
DE	-28.90	-8.67	-67.05	-83.24			
TOTAL	-25.85	+7.88	-50.56	-64.65			

Variation of SFC and NO_x with Mission Time for LR

LTO Cycle NO_x Emissions

	BASESR	BASESR GTACSR- GT EQ1		GTACSR- EQ3
EI _{NOx} T/O	20.81	31.34	20.04	19.41
EI _{NOx} C/O	15.59	25.42	14.97	13.12
EI _{NOx} AP	7.53	8.92	2.97	1.33
EI _{NOx} ID	4.36	4.79	0.74	0.21
LTO NO _x (gr)	4647.94	5082.43	2696.87	2320.68
Vs. Baseline (%)	-	+9.35	-41.98	-50.07

		BASELR	GTACLR- EQ1	GTACLR- EQ2	GTACLR- EQ3
	EI _{NOx} T/O	33.74	47.38	28.27	27.47
•	EI _{NOx} C/O	27.08	38.31	20.37	17.74
Long	EI _{NOx} AP	10.42	10.90	3.60	1.59
Range	EI _{NOx} ID	4.07	4.18	0.85	0.24
U	LTO NO _x (gr)	17783.61	15560.01	7952.04	6874.17
	Vs. Baseline (%)	-	-12.50	-55.28	-61.35

Short

Range

ICAO-LTO Cycle NO_x Emissions Predictions

Noise Results

Short Range

Long Range

GTAC vs. BASE SR EPNL (EPNdB)					
	Flyover	Approach	Sideline		
FAN	-5.3	-7.8	-5.0		
JET	-6.9	-8.0	-9.1		
TURBINE	-0.3	0.5	-0.6		
CORE	-4.2	-4.1	-3.4		
TOTAL	-5.6	-6.6	-5.9		
Cumulative	-18.1				

GTAC vs. BASE LR EPNL (EPNdB)					
	Flyover	Approach	Sideline		
FAN	-9.8	-11.9	-7.5		
JET	-7.7	-8.0	-8.5		
TURBINE	-5.8	-4.3	-6.2		
CORE	-3.8	-3.7	-2.6		
TOTAL	-9.6	-9.9	-8.0		
Cumulative		-27.5			

Effect of -1 EPNdB per source on total noise

	Flyover	Approach	Sideline		Flyover	Approach	Sideline
FAN	-0.72	-0.89	-0.52	FAN	-0.84	-0.89	-0.65
JET	-0.17	-0.02	-0.37	JET	-0.06	0.00	-0.20
TURBINE	-0.04	-0.05	-0.03	TURBINE	-0.06	-0.08	-0.08
CORE	-0.02	-0.02	-0.02	CORE	-0.01	-0.01	-0.02

Fuel Burn and NO_x Variation for 1% Increase of Selected Core Design Parameters (GTACSR)

HPT and HPC efficiencies have the larger influence

Contents

□ INTRODUCTION

□ METHODOLOGY

- o Engine Performance
- o Aircraft Performance
- o NO_x Emissions
- o Noise
- **RESULTS**
 - o Engine Performance
 - o Aircraft Performance & NO_x Emissions
 - o Noise
 - o Weight
 - o Sensitivity Analysis

□ SUMMARY & CONCLUSIONS

 \triangleright An integrated approach is used to assess the potential benefits of the GTAC concept in terms of fuel burned, NO_x emissions generated and noise produced, over equivalent thrust engines of Year 2000 technology during typical short and long range aircraft missions.

> According to the performance expected by the manufacturer for this engine and the modelling methods and assumptions the following conclusions are drawn:

- The GTAC engines burn $\sim 25\%$ less fuel than their corresponding baseline engines for the same mission.
- For the same combustor design, the GTAC engines produce more **NO**_x emissions during the whole mission.

Short and Long Range Mission Analysis for a Geared Turbofan with Active Core Technologies 29 A. Alexiou, N. Aretakis, I. Roumeliotis, K. Mathioudakis

- Assuming new technology combustor designs, significant reductions in NOx are achieved at mission and LTO cycle.
- The combination of high BPR, low fan speed and fan pressure ratio and smaller core of GTAC engines result in **noise reduction** at all three noise certification points.

> From the above, it appears that the GTAC concept has the potential to meet current targets for reducing fuel consumption, NO_x emissions and community noise.

 \triangleright A sensitivity analysis has shown that even further **improvements are possible** by optimising the most influential engine design parameters.

Short and Long Range Mission Analysis for a Geared Turbofan with Active Core Technologies A. Alexiou, N. Aretakis, I. Roumeliotis, K. Mathioudakis