

A. Kyriazis Research Assistant K. Mathioudakis Professor

Laboratory of Thermal Turbomachines National Technical University of Athens

- The problem of GPA fault diagnosis
- Description of the diagnostic procedure o Engine Partitioning
 - o Statistical Processing PDF integration
 - o Fault Isolation Criteria
 - o Fusion mechanism
- Method implementation
 - o Diagnosis of component faults on a turbofan engine

1.Individual diagnostic methods

2. Fusion Procedure

Summary - Conclusions

The problem of GPA fault diagnosis

- Description of the diagnostic procedure o Engine Partitioning
 - o Statistical Processing PDF integration
 - o Fault Isolation Criteria
 - o Fusion mechanism
- Method implementation
 - o Diagnosis of component faults on a turbofan engine

1.Individual diagnostic methods

2.Fusion Procedure

Summary - Conclusions

The problem of GPA fault diagnosis

*u***:** variables defining operating point.

f: set of *health parameters*, representing health condition of the engine.*Y*: set of measured variables (speeds, pressures, temperatures etc).

Y=F(u,f)

- The diagnostic procedure obtains solution for the inverse problem.
- •Usually system of equations underdetermined

The problem of GPA fault diagnosis

Y=*F*(*u*,*f*)

• Unique solution for f is derived with minimization of OF (GPA optimization)

$$OF = C_{1} \sum_{i=1}^{K} \left[\frac{Y_{i}^{m}(f) - Y_{i}^{g}}{Y_{i}^{g} \sigma_{Y_{i}}} \right]^{2} + C_{2} \sum_{i=1}^{K} \left| \frac{Y_{i}^{m}(f) - Y_{i}^{g}}{Y_{i}^{g} \sigma_{Y_{i}}} \right|$$
$$+ C_{3} \sum_{j=1}^{L} \left| \frac{f_{j} - f_{j}^{r}}{f_{j}^{r} \sigma_{f_{j}}} \right| + C_{4} \sum_{j=1}^{L} \left[\frac{f_{j} - f_{j}^{r}}{f_{j}^{r} \sigma_{f_{j}}} \right]^{2}$$

•Weight factors C_i represent relative importance of each term

•Factors C_i are defined based on application

The problem of GPA fault diagnosis

Description of the diagnostic procedure

- o Engine Partitioning
- o Statistical Processing PDF integration
- o Fault Isolation Criteria
- o Fusion mechanism
- Method implementation
 - o Diagnosis of component faults on a turbofan engine

1.Individual diagnostic methods

2.Fusion Procedure

Summary - Conclusions

LABORATORY OF THERMAL TURBOMACHINES NATIONAL TECHNICAL UNIVERSITY OF ATHENS

High-by-Pass ratio, partially mixed, turbofan engine utilized

•Health Parameters > Measurements

Underdetermined system

•Engine Partitioning reduces number of unknowns (Health Parameters)

Engine Partitioning

Two different modes of partitioning: (based on layout and physics of operation)

COLD-HOT-NOZZLE

LP-HP-NOZZLE

Engine Partitioning

For each partition:

- **•FIRST PASS of calculations**
- Estimation of *health parameters*

•GPA optimization method is applied as many times as parts of each partition

Statistical Processing – PDF integration

- **N** measurements sets N estimations of all *health parameters*
- •Estimations in terms of deltas (Percentage Deviations Δf)
- •Definition of threshold α , indicative of fault

Statistical Processing – PDF integration

Derivation of sample mean and sample standard deviation

$$\overline{X} = \overline{\Delta f_j} = \frac{1}{N} \sum_{n=1}^{N} \Delta f_j^n$$
$$s = \sqrt{\frac{1}{N-1} \sum_{n=1}^{N} \left(\Delta f_j^n - \overline{\Delta f_j}\right)^2}$$

•Integration of normal distribution in the area of $[-\alpha, +\alpha]$

This applies for all health parameters

Statistical Processing – PDF integration

$$P(f_j \in "non - faulty") = \int_{-a}^{a} normpdf(\Delta f_j) d\Delta f_j$$

 $P(f_{j} \in "faulty") = 1 - P(f_{j} \in "non - faulty")$

"non-faulty" health parameter

"faulty" health parameter

Δ

Fault Isolation Criteria

•Examination of fault probabilities P ($f_i \in "faulty"$)

A health parameter f_i is considered to be faulty when,

 $P(f_{j} \in "faulty") \ge 50\%$

Flowchart for selection of *"faulty" health parameters*

Fault Isolation Criteria

- **SECOND PASS of calculations**
- Estimation of *health parameters* found to be "faulty"
- •Again <u>sample</u> mean and sample standard deviation are derived •DI = $\frac{X}{s^2}$

•Faulty engine component the one with maximum DI

Fusion mechanism

- Probabilistic fusion technique (Aggregation of probabilities).
- **•**Fusion methodology is applied between FIRST PASS and SECOND PASS.
- More precisely to the outputs of PDF integration.
- Linear opinion pool is utilized (also known as weighted average)

$$X(j) = \frac{\sum_{h=1}^{m} w_{hj} \cdot p_{h}(f_{j})}{\sum_{h=1}^{m} w_{hj}}$$

- X (j) : the probability consensus value
- *wij* : the corresponding weights

 $p_h(f_j)$: the probability of health parameter f_j to be "faulty"

LABORATORY OF THERMAL TURBOMACHINES NATIONAL TECHNICAL UNIVERSITY OF ATHENS

Fusion mechanism

- The problem of GPA fault diagnosis
- Description of the diagnostic procedure o Engine Partitioning
 - o Statistical Processing PDF integration
 - o Fault Isolation Criteria
 - o Fusion mechanism

Method implementation

o Diagnosis of component faults on a turbofan engine

1.Individual diagnostic methods

2.Fusion ProcedureSummary - Conclusions

Method implementation

Is benchmark component faults on a turbofan engine have been examined.

- **•**For each fault N=50 measurements sets have been exploited.
- **Noisy simulated data from cruise section were utilized.**

Fault Case	Affected Component	Actual deviated health parameters
		ΔSW2=-0.7%,ΔSE2=-0.4%,
а	FAN, LPC	ΔSW12=-1%, ΔSE12=-0.5%
b	FAN	ΔSE12= -1%
С	HPC	ΔSW26= -1%, ΔSE26=-0.7%
d	HPC	ΔSE26= -1%
е	HPC	∆SW26= -1%
f	HPT	∆SW41=+1%
g	HPT	Δ SW41=-1%, ΔSE41=-1%
h	HPT	ΔSE41=-1%
i	LPT	∆SE49=-1%
j	LPT	ΔSW49=-1%, ΔSE49=-0.4%
k	LPT	∆SW49=-1%
	LPT	ΔSW49=+1%, ΔSE49=-0.6%
m	NOZZLE	ΔA8IMP=+1%
n	NOZZLE	ΔA8IMP=-1%
0	NOZZLE	ΔA8IMP=+2%

Noise	of	realistic	magnitude.

Operating Point quantities									
	Operating Follit qualities								
Pa	mb		P1		T1		WFE		
100	Pa		100 Pa		2 K		2 g/s		
Measurements									
XNLP	XN	HP	P13	P	3	Т3	Т	6	T13
6 rpm	12 r	pm	300 Pa	5kF	Pa	2 K	2	K	2 K

Noise level magnitude (3o)

The considered fault cases

Individual Diagnostic Methods

Individual GPA diagnostic methods (NLLS, CMBN, PI).

Two modes of Partitioning (CHN and LHN)

Fault case	Affected Component	NLLS	CMBN	PI	CHN	LHN
а	FAN, LPC	FAN	FAN	FAN	HPT	LPC
b	FAN	FAN	FAN	FAN	FAN	FAN
С	НРС	LPC	LPC	LPC	НРС	НРС
d	HPC	НРС	НРС	НРС	НРС	НРС
е	НРС	НРС	НРС	НРС	НРС	LPC
f	HPT	HPT	HPT	HPT	HPT	HPT
g	HPT	HPT	HPT	HPT	HPT	HPT
h	HPT	HPT	HPT	LPT	HPT	HPT
i	LPT	LPT	LPT	LPT	LPT	LPT
j	LPT	HPT	LPC	HPT	HPT	LPT
k	LPT	HPT	LPC	HPT	LPT	LPC
	LPT	HPT	LPT	LPT	LPT	LPT
m	NZLE	NZLE	LPC	NZLE	NZLE	HPC
n	NZLE	NZLE	NZLE	NZLE	NZLE	LPC
0	NZLE	NZLE	NZLE	NZLE	NZLE	NZLE

Misdiagnosis with gray shades

Individual Diagnostic Methods

Probabilities after FIRST PASS (CHN and LHN Partitions)

Individual Diagnostic Methods

DIs after SECOND PASS (CHN and LHN Partitions)

Fusion Procedure

- **•**Application on the two modes of Partitioning (CHN and LHN).
- **The probabilities of FIRST PASSes are utilized.**
- **The consensus probabilities drive the selection for SECOND PASS.**

WEIGHT DEFINITION

- Weighting application quantifies usage experience, credibility, a priori knowledge etc.
- Has mathematical base (derived from statistics).
- •*Ease in implementation.*

Two different approaches for weight definition:

- "Pessimistic" approach
- "Optimistic" approach

Fusion Procedure Two different approaches for weight definition:

• <u>"Pessimistic" approach</u>

The weights (of each diagnostic method) are defined according to its effectiveness.

e.g. If a diagnostic method has an efficiency of 80% then its weight vector is $W_i = (0.8, 0.8, ..., 0.8)$.

"Optimistic" approach

The weight of each diagnostic method is defined by comparing its effectiveness to the effectiveness of all other methods.

e.g. If a diagnostic method1 misses 2 examined fault cases and diagnostic method2 misses 4, then method1 has double weight vector W_i than method2

For the purposes of the current work the "optimistic" approach for weight definition was adopted

Fusion Procedure

Probabilistic Fusion Results

Fault case	Affected Component	CHN	LHN	FUSION
а	FAN, LPC	HPT	LPC	FAN
b	FAN	FAN	FAN	FAN
С	HPC	HPC	HPC	HPC
d	НРС	HPC	HPC	HPC
е	НРС	HPC	LPC	HPC
f	HPT	НРТ	НРТ	НРТ
g	HPT	НРТ	НРТ	НРТ
h	HPT	НРТ	НРТ	НРТ
i	LPT	LPT	LPT	LPT
j	LPT	НРТ	LPT	НРТ
k	LPT	LPT	LPC	LPT
	LPT	LPT	LPT	LPT
m	NZLE	NZLE	HPC	NZLE
n	NZLE	NZLE	LPC	NZLE
0	NZLE	NZLE	NZLE	NZLE

Misdiagnosis with gray shades

Fusion Procedure

Consensus Probabilities after FIRST PASSes and DIs after SECOND PASS

•(CHN and LHN Partitions)

- The problem of GPA fault diagnosis
- Description of the diagnostic procedure o Engine Partitioning
 - o Statistical Processing PDF integration
 - o Fault Isolation Criteria
 - o Fusion mechanism
- Method implementation
 - o Diagnosis of component faults on a turbofan engine

1.Individual diagnostic methods

2.Fusion Procedure

Summary - Conclusions

Summary - Conclusions

- A method for the enhancement of effectiveness of previous GPA techniques has been presented. The method handles the obstacle of underdetermined systems with the notion of engine partitioning.
- The presented method also introduced a statistical processing methodology (namely PDF integration) for the derivation of fault probabilities concerning the state of *health parameters* of an engine.
- Effectiveness of the method has been demonstrated by application to simulated noisy data sets of a turbofan engine.
- Secondly, a probabilistic fusion scheme, for further amplification of performance was presented along with application results for effectiveness' demonstration.
- Both PDF integration and probabilistic fusion can be embedded to other diagnostic algorithms, a feature of more general usefulness.