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Paper Objectives

Describe an object-oriented approach for modelling 
Secondary Air Systems

Present the detailed modelling of some typical Secondary 
Air System components

Validate the modelling against publicly available 
experimental  and/or computational results

Demonstrate the integration of such components in a 
whole engine performance model
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Secondary Air System Schematic
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Secondary Air System Modelling: Current Approach

Dedicated Air 
System Model

Engine Performance 
Model

Values
 

for Bleeds & Returns for 
particular engine running conditions

Disadvantages
The Secondary Air System is a “black box” for the 

performance engineer.
The Air System designer cannot assess autonomously the 

system performance as part of the whole engine model.
Increased scope for error during data exchange.
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Secondary Air System Modelling: Proposed Approach

Advantages
Individual components or entire air systems can be integrated 

transparently in whole engine performance models.
Different air system design configurations can be constructed and 

compared in a generic, flexible and intuitive manner.
Component changes visible during model exchanging.

Secondary Air System (SAS) 
components directly integrated in 

engine model. 
Boundary conditions (IN/OUT 
m, Pt, Tt, Vφ) communicated 

through appropriate Ports.
SAS component

(pre-swirl system)SAS Port
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Component Models

Using the advantages of object-oriented modelling (such as 
encapsulation, inheritance, abstraction aggregation and 
polymorphism), it is possible to create secondary air system models 
for a variety of engine configurations using three main components: 
generic, orifice

 
and labyrinth seal.

For a specified component geometry, the inlet flow conditions (m, Pt, 
Tt, Vφ) are linked to the outflow ones through the conservation 
equations for mass flow, energy, axial and angular momentum.

The component’s performance can be calculated for any valid 
combination of input/output variables and component characteristics.
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Generic Component Model
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STATOR
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Arbitrary geometry (discs, cones, cylinders)
J Input flows and N output flows
Fully mixed flow
Work and heat transfer from surrounding K surfaces
SAS examples: pre-swirl system chamber, compressor inter-disc cavities, 

drive-cone cavity
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Generic Component Equations (I)
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Angular Momentum Conservation Equation → Vφ,mix

Energy Conservation Equation → Tt,mix

Moment exerted by fluid on each surrounding surface, Mk (from 
drag force equation):
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Generic Component Equations (II)

Mixing total pressure, Pt,mix
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Axial momentum equation → Ps,mix

 

:
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Orifice Component Model
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Orifice Component Equations
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1-D, isentropic, compressible expansion of a perfect gas from the upstream total 
pressure to the downstream static pressure and considering the work transfer to 
the fluid:
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Labyrinth Seal Component Model
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Simulation Environment Overview
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Window

Engine Diagram
(schematic view)

Experiment EL file
(Simulation View)

Experiment Results
(Simulation View)

Component EL file
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Test Cases: Pre-Swirl Chamber
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Test Cases: Pre-Swirl Chamber
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Test Cases: Pre-Swirl Chamber
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Test Cases: Pre-Swirl Chamber
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Test Cases: Pre-Swirl Chamber
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Test Cases: Pre-Swirl Chamber
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Test Cases: Rotating Cavities

Alexiou et al, Int. J. Experimental Heat Transfer, 13, pp. 299-328
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Test Cases: Rotating Holes –
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Test Cases: Rotating Holes –
 

Axial 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8βmix

CD

Present Work
CFD
Measured

Pre-swirl
Nozzles

Receiver
Holes

Pre-swirl
Chamber

Pre-swirl
Nozzles

Receiver
Holes

Pre-swirl
Chamber

Lewis et al, ASME GT-2006-90132

L/d=1.25
r/d=0
α=0°
NRH

 

=60



26Secondary Air System Component Modelling For Engine Performance Simulations
A. Alexiou & K. Mathioudakis

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6βmix

CD

Pre-swirl
Nozzles

Receiver
Holes

Pre-swirl
Chamber

Pre-swirl
Nozzles

Receiver
Holes

Pre-swirl
Chamber

Test Cases: Rotating Holes –
 

Axial 

Chew et al, ASME GT-2003-38084

L/d=0.86
r/d=0
α=0°
NRH

 

=72



27Secondary Air System Component Modelling For Engine Performance Simulations
A. Alexiou & K. Mathioudakis

0.0

0.1

0.2

0.3

0.4

0.5

0.6

20 25 30 35 40 45
Incidence Angle, i (deg)

CD

Measured: ΔΩ=0
Present Work ΔΩ=0
Measured: ΔΩ>0
Present Work ΔΩ>0

ROTOR

SHAFT

ROTOR

SHAFT

Test Cases: Rotating Holes –
 

Radial  

Alexiou et al, Int. J. Heat and Fluid Flow, 21, pp. 701-709

L/d=0.45
r/d=0.067
α=0°
NRH

 

=12



28Secondary Air System Component Modelling For Engine Performance Simulations
A. Alexiou & K. Mathioudakis

Test Cases: Pre-swirl System with Labyrinth Seals  
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Whole Engine Model (I)  
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Whole Engine Model (II)  

0.964

0.968

0.972

0.976

0.98

0.984

0.988

0.8 0.85 0.9 0.95 1 1.05 1.1βmix

T t
,re

l,R
H
/T

t,P
N

0.6

0.62

0.64

0.66

0.68

0.7

CD



31Secondary Air System Component Modelling For Engine Performance Simulations
A. Alexiou & K. Mathioudakis

SECONDARY AIR SYSTEM MODELLING
COMPONENT MODELS

o Generic Component
o Orifice Component
o Labyrinth Seal Component

IMPLEMENTATION & VALIDATION
o Simulation Environment Overview
o Test Cases

Pre-Swirl Chamber
Rotating Cavities
Rotating Holes
Pre-swirl System with Labyrinth Seals

o Whole Engine Model
SUMMARY & CONCLUSIONS

Contents



32Secondary Air System Component Modelling For Engine Performance Simulations
A. Alexiou & K. Mathioudakis

Summary & Conclusions

An approach for modelling secondary air systems within an object-
oriented environment for gas turbine engine performance simulations was 
presented.

The modelling of selected components was presented in detail. The 
components were used to simulate various air system configurations and the 
predicted results are consistent with available experimental data and 
computational results. 

An example of adding parts of an air system to a whole engine 
performance model was given to demonstrate the benefits of this approach.

The flexibility of the simulation environment and the generality of the 
component modelling approach allow easily different air system 
configurations to be constructed and evaluated, both on their own and as 
part of a complete engine performance model. 

Since the approach presented allows components to be represented in 
varied levels of detail, it is possible to create more realistic models early in 
the engine design process.
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Friction Coefficients
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Heat transfer Coefficient Correlations

Natural Convection from a Vertical Plate:

Natural Convection from Upper Surface of heated Plate:

Forced Convection from a Flat Plate:
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