



1

### A. Alexiou, E.H. Baalbergen,

O. Kogenhop, K. Mathioudakis, P. Arendsen



Laboratory of Thermal Turbomachines National Technical University of Athens

National Aerospace Laboratory, NLR The Netherlands



http://www.vivaceproject.com

Advanced Capabilities For Gas Turbine Engine Performance Simulations Alexiou, Baalbergen, Kogenhop, Mathioudakis, Arendsen





Implementing Component 'Zooming' and Distributed Simulations in PRopulsion Object-Oriented SImulation Software



**<u>Component Zooming:</u>** execution of higher order analysis code and integration of its results back in the 0-D engine cycle

**Distributed Simulations:** technologies that enable a simulation program to execute on a computing system containing multiple processors interconnected by a communication network





3

- **PROOSIS OVERVIEW**
- Compressor Stage-Stacking
- The Engine Model
- COMPONENT ZOOMING
  - o The 'de-coupled' Approach
  - o The 'semi-coupled' Approach
  - **o The 'fully-coupled' Approach**
- □ DISTRIBUTED SIMULATIONS
  - o Implementing Distributed Simulations
  - o Prototype Development
  - o Future Developments
- □ SUMMARY & CONCLUSIONS



#### **PROOSIS OVERVIEW: Code View**





Component EL object-oriented code containing — mathematical description of real component

**Output Window** 



### **PROOSIS OVERVIEW: Schematic View**





Drag-and-drop icons from palette to construct engine model.

Connect components through appropriate communication ports

Advanced Capabilities For Gas Turbine Engine Performance Simulations Alexiou, Baalbergen, Kogenhop, Mathioudakis, Arendsen



### **PROOSIS OVERVIEW: Simulation View**







### Contents



7

### **PROOSIS OVERVIEW**

- Compressor Stage-Stacking
- **The Engine Model**
- COMPONENT ZOOMING
  - o The 'de-coupled' Approach
  - o The 'semi-coupled' Approach
  - o The 'fully-coupled' Approach
- □ DISTRIBUTED SIMULATIONS
  - **o Implementing Distributed Simulations**
  - o Prototype Development
  - o Future Developments
- SUMMARY & CONCLUSIONS





# 'stack' stages together to evaluate overall compressor performance





### FORTRAN: SUBROUTINE stageStack (arguments) compiled as static library (.lib)

PROOSIS: "FORTRAN" FUNCTION stageStack (arguments) IN stageStack.lib

### OR

C++ wrapper for FORTRAN subroutine: extern "C" void \_\_stdcall STAGESTACK (arguments); void stageStackClass::stageStack(arguments) {STAGESTACK (arguments); } PROOSIS: EXTERN CLASS stageStackClass METHODS EXTERN METHOD stageStack (arguments) END CLASS INCLUDE "stageStack.h" IN "stageStack.lib"





### PROOSIS OVERVIEW

- Compressor Stage-Stacking
- The Engine Model
- COMPONENT ZOOMING
  - o The 'de-coupled' Approach
  - o The 'semi-coupled' Approach
  - o The 'fully-coupled' Approach
- □ DISTRIBUTED SIMULATIONS
  - o Implementing Distributed Simulations
  - o Prototype Development
  - o Future Developments
- SUMMARY & CONCLUSIONS





Single-Shaft Industrial Gas Turbine Engine with 15-stage axial compressor



Advanced Capabilities For Gas Turbine Engine Performance Simulations 11 Alexiou, Baalbergen, Kogenhop, Mathioudakis, Arendsen



### **Engine Model**



12 10 **Single-Shaft Industrial** Pressure Ratio **Gas Turbine Engine** with 15-stage axial compressor 0 10 15 20 25 Corrected Mass Flow BETA MAP P MAAI

Advanced Capabilities For Gas Turbine Engine Performance Simulations12Alexiou, Baalbergen, Kogenhop, Mathioudakis, Arendsen





### **Compressor 1-D Inheritance Tree**



Advanced Capabilities For Gas Turbine Engine Performance Simulations13Alexiou, Baalbergen, Kogenhop, Mathioudakis, Arendsen











#### **Component Zooming: Results (DCA)**





Advanced Capabilities For Gas Turbine Engine Performance Simulations 16 Alexiou, Baalbergen, Kogenhop, Mathioudakis, Arendsen

### **Component Zooming: Semi-coupled Approach (SCA)**





Advanced Capabilities For Gas Turbine Engine Performance Simulations 17 Alexiou, Baalbergen, Kogenhop, Mathioudakis, Arendsen



### **The meaning of Modification factors**



**Corrected Mass Flow** 

#### **Transformation of component performance maps**





## **Structure of Adaptive models**

**Modification factors** <u>*f*</u><u>*k*</u> for components</u>



: Actual value for parameter



 $X_{p,ref,k}$  : Reference value for parameter

### **Transformation of component performance maps**







Advanced Capabilities For Gas Turbine Engine Performance Simulations20Alexiou, Baalbergen, Kogenhop, Mathioudakis, Arendsen



### **Component Zooming: Fully-coupled Approach (FCA)**



Advanced Capabilities For Gas Turbine Engine Performance Simulations21Alexiou, Baalbergen, Kogenhop, Mathioudakis, Arendsen21





### Design Point Case 1.5% inter-stage bleed from 10<sup>th</sup> stage

| PARAMETER                        | % DIFFERENCE |
|----------------------------------|--------------|
| Fuel Flow Rate                   | 0.289        |
| Compressor Inlet Flow            | 0.111        |
| Compressor Delivery Temperature  | 0.438        |
| Compressor Pressure Ratio        | 0.211        |
| Compressor Polytropic Efficiency | -0.238       |
| Compressor Power                 | 0.583        |





- **PROOSIS OVERVIEW**
- Compressor Stage-Stacking
- The Engine Model
- COMPONENT ZOOMING
  - o The 'de-coupled' Approach
  - o The 'semi-coupled' Approach
  - o The 'fully-coupled' Approach
- □ DISTRIBUTED SIMULATIONS
  - o Implementing Distributed Simulations
  - o Prototype Development
  - o Future Developments
- SUMMARY & CONCLUSIONS





Collaborative modelling among possibly geographically dispersed engineers

- Easy and efficient deployment of subsystem models
- □ Protection of ownership and IPR
- □ Reduction of simulation time through load distribution
- □ Size and complexity of the simulation model may grow irrespective of capability of computing infrastructure
- Reuse of submodels in different simulations





Technologies considered:

- CORBA: complex; did not catch up with growing Web developments and demands; high run-time costs; difficulties with security; versions & difficulties in backward compatibility; not supported by Microsoft...
- DCOM: serious security problems; did not catch up with growing Web developments and demands; deprecated in favour of .NET
- Java RMI: Java specific; being obscured by Web Service technology
- XML and SOAP: slower than e.g. CORBA and RMI but providing good basis for secure distributed web-based solutions in wide-area contexts
- Web Services: uses open standards and protocols (incl. SOAP and XML); commonly used nowadays to implement secure distributed solutions in SOA style; standards and tools are emerging
- Web Service: state-of-the-art technology enabling software components (clients, servers) to communicate over a network using standard messages and formats





### Prototype in VIVACE context: PROOSIS with compressor stage stacking function, available as "User Library", running on a remote computer

Compressor stage stacking function:

- developed by, and proprietary code of NTUA
- written in Fortran, available as a shared library (DLL) on Windows
- available to PROOSIS users at NTUA as a PROOSIS User Library (PROOSIS' mechanism to include customer code in engine simulations)
- code may be used but cannot be installed outside NTUA



### **Distributed Simulations: Prototype Development (II)**





Advanced Capabilities For Gas Turbine Engine Performance Simulations27Alexiou, Baalbergen, Kogenhop, Mathioudakis, Arendsen27







Advanced Capabilities For Gas Turbine Engine Performance Simulations28Alexiou, Baalbergen, Kogenhop, Mathioudakis, Arendsen







Advanced Capabilities For Gas Turbine Engine Performance Simulations29Alexiou, Baalbergen, Kogenhop, Mathioudakis, Arendsen



#### **Distributed Simulations: Live Public Demo**





#### Advanced Capabilities For Gas Turbine Engine Performance Simulations 30 Alexiou, Baalbergen, Kogenhop, Mathioudakis, Arendsen





### Design of more generic (re-usable) interface

- $\checkmark$  multiple function implementations
- ✓ not all layers need to be modified
- \* additional overhead and delays in communication
- Reduction of overhead caused by conversions & data transfers
  - ✓ use pure C++ development environment
  - C++ support for Web Services limited/unstable
  - > Java platform allows integration with other collaborative tools

# Reduction of overhead in DLL loading and unloading

 $\checkmark$  load DLLs once and dispose after final calculation

### Multi-user and security

- ✓ Use Web Service Security specification
- ✓ allow multi-user access





- **PROOSIS OVERVIEW**
- Compressor Stage-Stacking
- **The Engine Model**
- COMPONENT ZOOMING
  - o The 'de-coupled' Approach
  - o The 'semi-coupled' Approach
  - o The 'fully-coupled' Approach
- □ DISTRIBUTED SIMULATIONS
  - o Implementing Distributed Simulations
  - o Prototype Development
  - o Future Developments
- □ SUMMARY & CONCLUSIONS





- PROOSIS is a standalone, multi-platform, object-oriented simulation environment for gas turbine engine performance simulations. It can be used to create, run, manage and share engine models using either the standard or custom libraries of engine components. The feasibility of performing multifidelity and distributed simulations with PROOSIS was demonstrated in this paper.
- Using the model of an industrial gas turbine engine and a 1-D compressor stage stacking code as an example, different implementations for integrating high fidelity component analysis in overall engine simulations were presented. The tool's flexible and extensible architecture gives the user the freedom to select the most suitable approach for a particular simulation case.





- The stage stacking code is also used to demonstrate distributed simulations. A prototype of a Web Component has been created and successfully tested that remotely invokes the code from an engine simulation, via the internet, using Web Services technology.
- These demonstrations prove that the tool's architecture is adaptable enough to integrate different modelling methods and its potential to fulfil its role as a shared simulation environment.