

A. Tsalavoutas

M. Kelaidis

N. Thoma

K. Mathioudakis

Laboratory of Thermal Turbomachines National Technical University of Athens

- Emissions correlations types
- Predicting capabilities of existing emissions correlations
- Adaptation of emissions correlations to measured data o Adaptation through scaling

o Adaptation through optimization methods

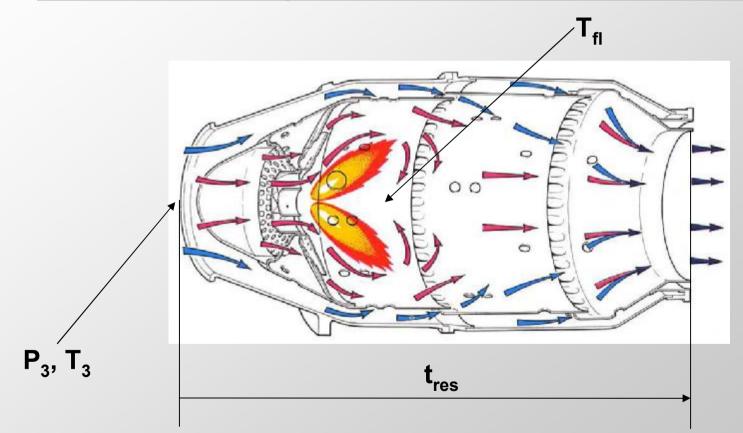
- Establishment of generic correlations through multivariate analysis
- Adaptive performance models & emissions predictions
- Summary Conclusions

Emissions correlations types

- Predicting capabilities of existing emissions correlations
- Adaptation of emissions correlations to measured data o Adaptation through scaling
 - o Adaptation through optimization methods
- Establishment of generic correlations through multivariate analysis
- Adaptive performance models & emissions predictions
- Summary Conclusions

Emissions Correlations Types

□ In most cases, emissions correlations are established through the analysis of measured data of a specific gas turbine or combustor.


□ Most attention is given to nitrogen oxides (NOx) since they have a greater environmental impact

□ Correlations published in open literature can be classified in two main classes: (a) Direct prediction, and (b) Ratio type

Emissions Correlations Types

Characteristic Cycle Variables that Affect Emissions

Emissions Correlations Types

Direct prediction correlations use a number of cycle variables along the engine

Odgers & Kremtcher
$$EINO_X = 29 \cdot e^{\left\{\frac{-21670}{T_{fl}}\right\}} \cdot P_3^{0.66} \cdot \left[1 - e^{\left\{-250 \cdot t_{form}\right\}}\right]$$

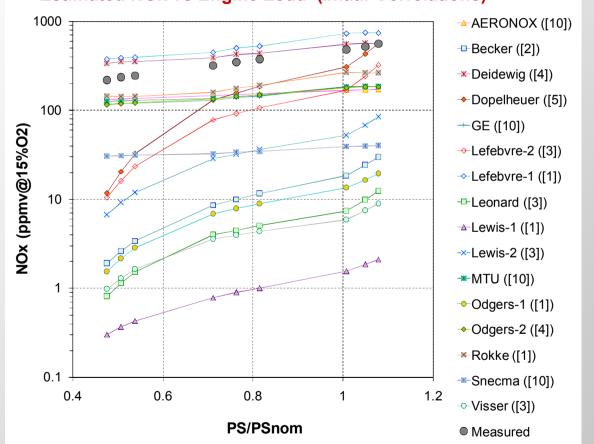
Ratio type correlations use reference values of certain cycle variables

Dopelheur & Lecht
$$\frac{EINOx}{EINOx_{ref}} = \left(\frac{P_3}{P_{3,ref}}\right)^{0.5} \left(\frac{T_{3,ref}}{T_3}\right)^{0.5} \left(\frac{T_{pz,ref}}{T_{pz}}\right)^{1.5} e^{38000 \left(\frac{1}{T_{fl,ref}} - \frac{1}{T_{fl}}\right)}$$

- Emissions correlations types
- Predicting capabilities of existing emissions correlations
- Adaptation of emissions correlations to measured data o Adaptation through scaling
 - o Adaptation through optimization methods
- Establishment of generic correlations through multivariate analysis
- Adaptive performance models & emissions predictions
- Summary Conclusions

Predicting Capabilities of Existing Correlations

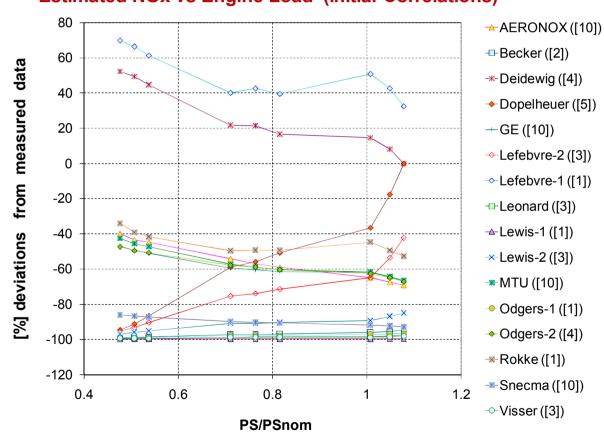
□ A large number of semi-empirical correlations have been identified in open literature


□ The predicting capability of the collected correlations has been assessed through their application in two cases:

> An industrial single shaft gas turbine (Siemens V64-3)

A military turbojet engine (ATAR -101F2)

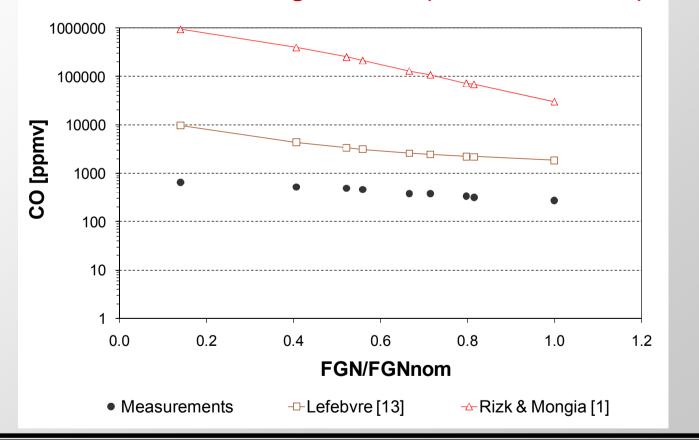
Predicting Capabilities of Existing Correlations Predicted and Measured NOx of the Industrial Gas Turbine



Estimated NOx vs Engine Load (Initial Correlations)

LABORATORY OF THERMAL TURBOMACHINES NATIONAL TECHNICAL UNIVERSITY OF ATHENS

Predicting Capabilities of Existing Correlations **Predicted and Measured NOx of the Industrial Gas Turbine**



Estimated NOx vs Engine Load (Initial Correlations)

Predicting Capabilities of Existing Correlations Predicted and Measured CO of the Military Turbojet

Estimated CO vs Engine Thrust (Initial Correlations)

- Emissions correlations types
- Predicting capabilities of existing emissions correlations
- Adaptation of emissions correlations to measured data o Adaptation through scaling

o Adaptation through optimization methods

 Establishment of generic correlations through multivariate analysis

- Adaptive performance models & emissions predictions
- Summary Conclusions

Emissions Adaptation Through Scaling

Emissions correlations predictions are 'scaled' with a multiplier coefficient so that the average of the scaled emissions is closer to the actual one


$$C_{mult} = \frac{\sum_{i=1}^{n} e_{i}^{pred} / e_{i}^{meas}}{n}$$

 e^{meas} : measured emissions e^{pred} : predicted emissions

n : number of experimental data points

Emissions Adaptation Through Scaling Industrial Gas Turbine Test Case

- Emissions correlations types
- Predicting capabilities of existing emissions correlations
- Adaptation of emissions correlations to measured data o Adaptation through scaling

o Adaptation through optimization methods

- Establishment of generic correlations through multivariate analysis
- Adaptive performance models & emissions predictions
- Summary Conclusions

Emissions Adaptation Through Optimization Methods

Adaptation coefficients are introduced in emissions correlations

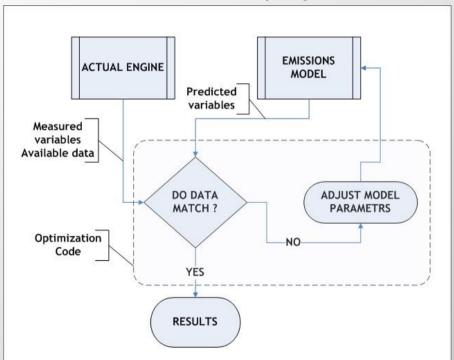
Direct Type Correlation (Odgers & Kretchmer)

$$EINO_{x} = a \cdot 29 \cdot e^{\left\{\frac{-b \cdot 21670}{T_{fl}}\right\}} \cdot P_{3}^{C \cdot 0.66} \cdot \left[1 - e^{\left\{-d \cdot 250 \cdot t_{form}\right\}}\right] \frac{Cycle}{Variables}$$

$$P_{3}, T_{fl}, t_{form}$$

Ratio Type Correlation (Dopelheur & Lecht)

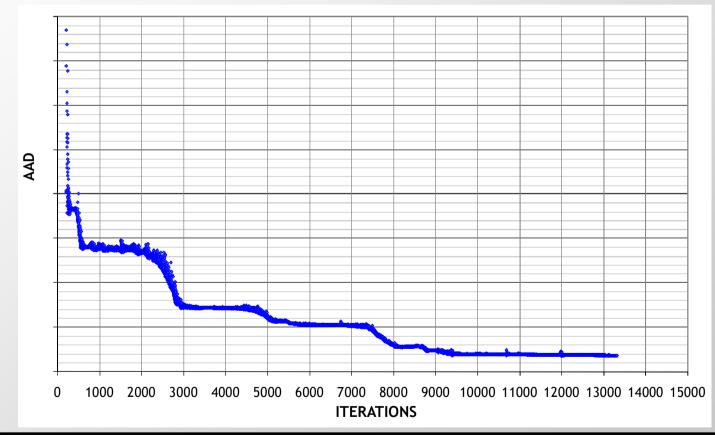
$$\frac{EINO_{x}}{EINO_{x_{ref}}} = a \left(\frac{P_{3}}{P_{3_{ref}}}\right)^{b \cdot 0.5} \left(\frac{T}{\frac{3_{ref}}{T_{3}}}\right)^{c \cdot 0.5} \left(\frac{T}{\frac{pz_{ref}}{T_{3}}}\right)^{d \cdot 1.5} e^{\left[f \cdot 38000 \left(\frac{1}{T_{fl, ref}} - \frac{1}{T_{fl}}\right)\right]} \frac{Cycle}{Variables} \frac{Adaptation}{Coefficients}}{P_{3}, T_{3}, T_{pz}, T_{fl}} = a, b, c, d$$


Correlations Adaptation for Optimal Emissions Prediction Proceedings of ASME TURBO EXPO '07, May 14-17, 2007, Montreal, Canada Adaptation Coefficients

a, b, c, d

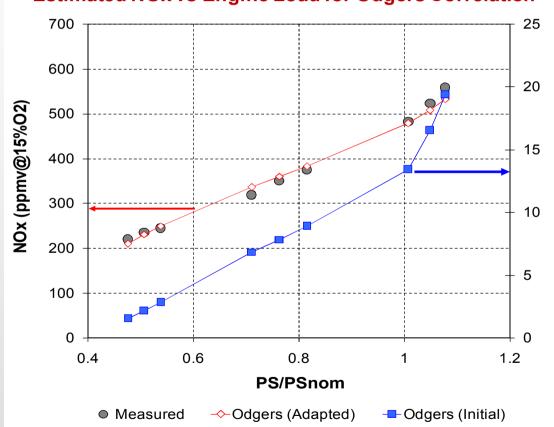
Emissions Adaptation Through Optimization Methods

Adaptation coefficients estimation through the minimization of appropriate cost function (CF)


Employed Cost Function $CF = \sum_{i=1}^{i=n} \left[\left(e_i^{pred} - e_i^{meas} \right) \cdot w_i \right]^2$

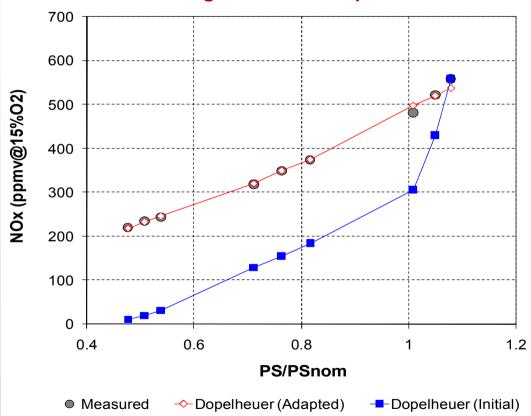
Emissions Adaptation Through Optimization Methods

Convergence History Example


Adaptation of NOx Correlation to Industrial Gas Turbine Data

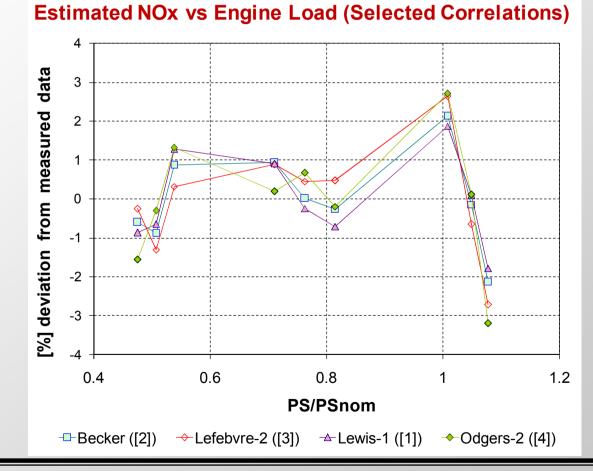
LABORATORY OF THERMAL TURBOMACHINES NATIONAL TECHNICAL UNIVERSITY OF ATHENS

Emissions Adaptation Through Optimization Methods Predicted and Measured NOx of the Industrial Gas Turbine

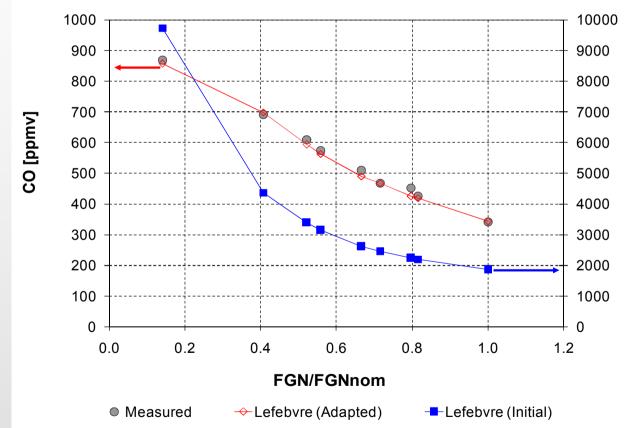


Estimated NOx vs Engine Load for Odgers Correlation

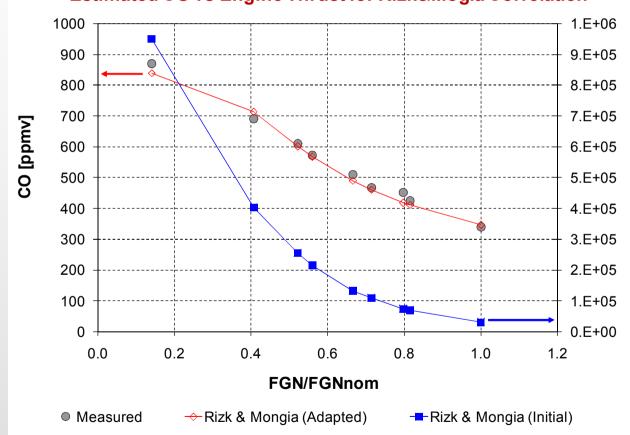
LABORATORY OF THERMAL TURBOMACHINES NATIONAL TECHNICAL UNIVERSITY OF ATHENS


Emissions Adaptation Through Optimization Methods Predicted and Measured NOx of the Industrial Gas Turbine

Estimated NOx vs Engine Load for Dopelheuer Correlation


Emissions Adaptation Through Optimization Methods Predicted and Measured NOx of the Industrial Gas Turbine

Correlations Adaptation for Optimal Emissions Prediction Proceedings of ASME TURBO EXPO '07, May 14-17, 2007, Montreal, Canada


Emissions Adaptation Through Optimization Methods Predicted and Measured CO of the Military Turbojet

Estimated COvs Engine Thrust for Lefebvre Correlation

Emissions Adaptation Through Optimization Methods Predicted and Measured CO of the Military Turbojet

Estimated CO vs Engine Thrust for Rizk&Mogia Correlation

- Emissions correlations types
- Predicting capabilities of existing emissions correlations
- Adaptation of emissions correlations to measured data o Adaptation through scaling

o Adaptation through optimization methods

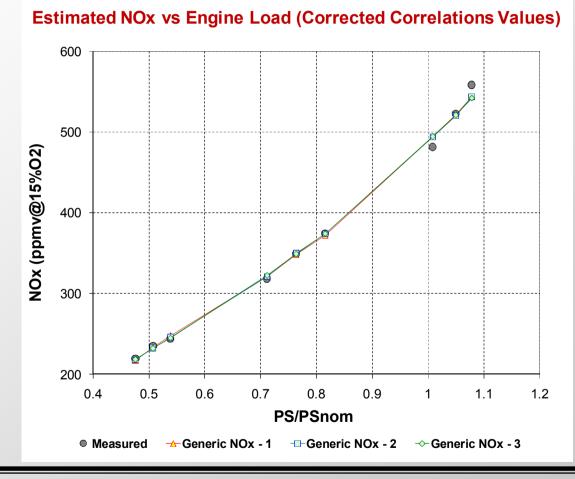
- Establishment of generic correlations through multivariate analysis
- Adaptive performance models & emissions predictions
- Summary Conclusions

Establishment of Generic Correlations Through Multivariate Analysis

Generic emissions correlations can be formulated taking account the parameters that influence the emissions generation mechanism

Investigated Generic Emissions Correlation

$$NOx = a \cdot e^{b \cdot T_3} \cdot P_3^n \cdot far^c$$
$$NOx = a \cdot e^{b \cdot T_{fl}} \cdot P_3^n \cdot far^c$$
$$NOx = a \cdot e^{b \cdot T_{fl}} \cdot P_3^n \cdot m_{air}^c$$


□ The coefficients of these correlations can be determined from available emissions data using a multivariate analysis based on their linear transformation

$$NOx = a \cdot e^{b \cdot T_{fl}} \cdot P_3^n \cdot far^c \Rightarrow \ln(NOx) = \ln a + b \cdot T_{fl} + n \cdot \ln(P_3) + c \cdot \ln(far)$$

LABORATORY OF THERMAL TURBOMACHINES NATIONAL TECHNICAL UNIVERSITY OF ATHENS

Establishment of Generic Correlations Through Multivariate Analysis Predicted and Measured NOx of the Industrial Gas Turbine

- Emissions correlations types
- Predicting capabilities of existing emissions correlations
- Adaptation of emissions correlations to measured data o Adaptation through scaling

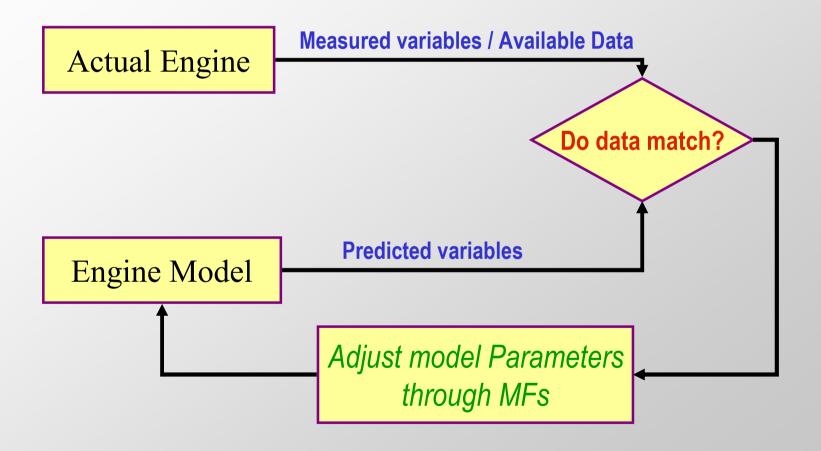
o Adaptation through optimization methods

- Establishment of generic correlations through multivariate analysis
- Adaptive performance models & emissions predictions
- Summary Conclusions

Adaptive Performance Models & Emissions Prediction

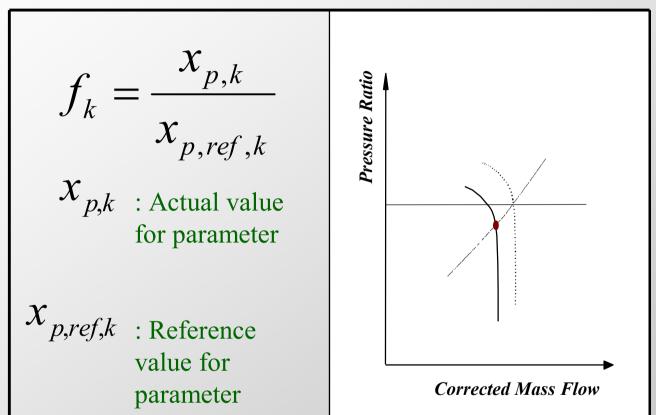
□ The accuracy of employed variables affects the accuracy of emissions predictions

□ Engine performance model can be used in cases where the experimental study is impractical and/or expensive


Adaptive engine performance models gives the possibility of accurate reproduction of cycle variables for a wide range of operating conditions

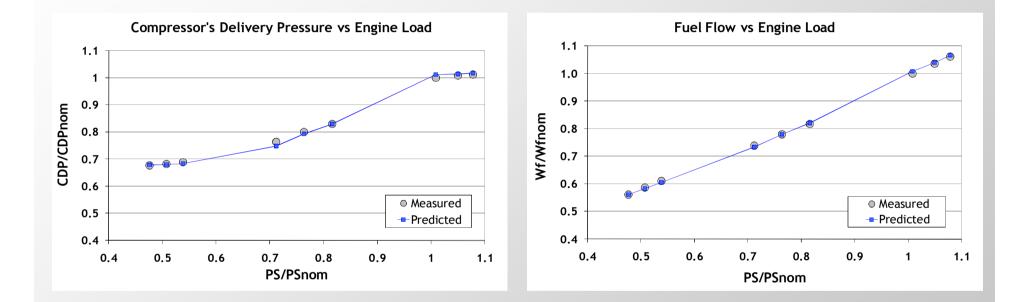
LABORATORY OF THERMAL TURBOMACHINES NATIONAL TECHNICAL UNIVERSITY OF ATHENS

Adaptive Performance Models & Emissions Prediction


Elements of Adaptive Models

Adaptive Performance Models & Emissions Prediction

The Meaning of Modification Factors



Transformation of component performance maps

LABORATORY OF THERMAL TURBOMACHINES NATIONAL TECHNICAL UNIVERSITY OF ATHENS

Adaptive Performance Models & Emissions Prediction Industrial Gas Turbine Adaptive Model Predictions

- Emissions correlations types
- Predicting capabilities of existing emissions correlations
- Adaptation of emissions correlations to measured data o Adaptation through scaling

o Adaptation through optimization methods

- Establishment of generic correlations through multivariate analysis
- Adaptive performance models & emissions predictions

Summary - Conclusions

Summary - Conclusions

- Existing emissions correlations can be adapted to emissions data of a particular engine for prediction to an acceptable degree of accuracy
- Generic correlations can be formulated and adapted to available emissions data with a high degree of accuracy
- Adaptive performance models can be used for accurate regeneration of employed cycle variables