DEPARTMENT OF AERONAUTICAL SCIENCES HELLENIC AIR FORCE ACADEMY DEPARTMENT OF NAVAL SCIENCES HELLENIC NAVAL ACADEMY

A VIRTUAL LABORATORY FOR EDUCATION ON GAS TURBINE PRINCIPLES AND OPERATION

K. Mathioudakis¹, N. Aretakis¹, P. Kotsiopoulos², E. A. Yfantis³

¹Laboratory of Thermal Turbomachines National Technical University of Athens

²Department of Aeronautical Sciences Hellenic Air Force Academy ³Department of Naval Sciences Hellenic Naval Academy

GT2006-90357 A VIRTUAL LABORATORY FOR EDUCATION ON GAS TURBINE PRINCIPLES AND OPERATION

- Why A Virtual Lab
- **Computer Representation Versus Actual Gas Turbine**
- The Virtual Lab Software
 - **Gas Turbine Principles and Components**
 - > Design Point Analysis
 - > Off Design Operation
 - > Virtual Test Facilities and Exercises
- **•**Further Educational Aspects-Conclusions

Why A Virtual Lab

New instruction methods are needed to augment the traditional teaching paradigms.

Rich online learning media: supply current information, promote student's technology proficiencies.

Traditional educational tools (textbooks, lectures, and laboratories) : Static, not easily customized, cannot provide newest scientific information.

Information technologies can provide with up-to-date information (Internet).

Computational media: powerful to train students, the next generation of learning materials.

For teachers: multimedia education can help explain difficult concepts more clearly.

True computational media should incorporate: dynamic animations, interactivity, visual design to stimulate, challenge, and test students.

Why A Virtual Lab

Computer Representation Versus Actual Gas Turbine

The Virtual Lab Software

Gas Turbine Principles and Components

> Design Point Analysis

> Off Design Operation

> Virtual Test Facilities and Exercises

•Further Educational Aspects-Conclusions

Computer Representation Versus Actual Gas Turbine

A Gas Turbine: engineering system comprising components performing different kinds of tasks.

Building-up knowledge on the operation of a Gas Turbine engine may be a tedious experience.

How to examine an engine's behavior?

☞to have a "test engine"

To observe an engine operating in the field.

reto run a "toy engine" (an engine made for educational purposes).

With actual engines: expensive, long time to gather information, instruments in difficult positions.

The computer model: gives very easily a lot of information which would be difficult, expensive and some times even impossible to obtain on an actual engine.

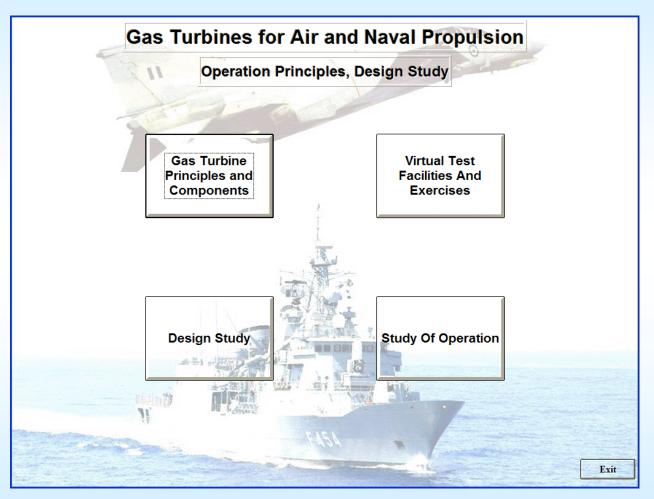
•Why A Virtual Lab

Computer Representation Versus Actual Gas Turbine

The Virtual Lab Software

Gas Turbine Principles and Components

Design Point Analysis

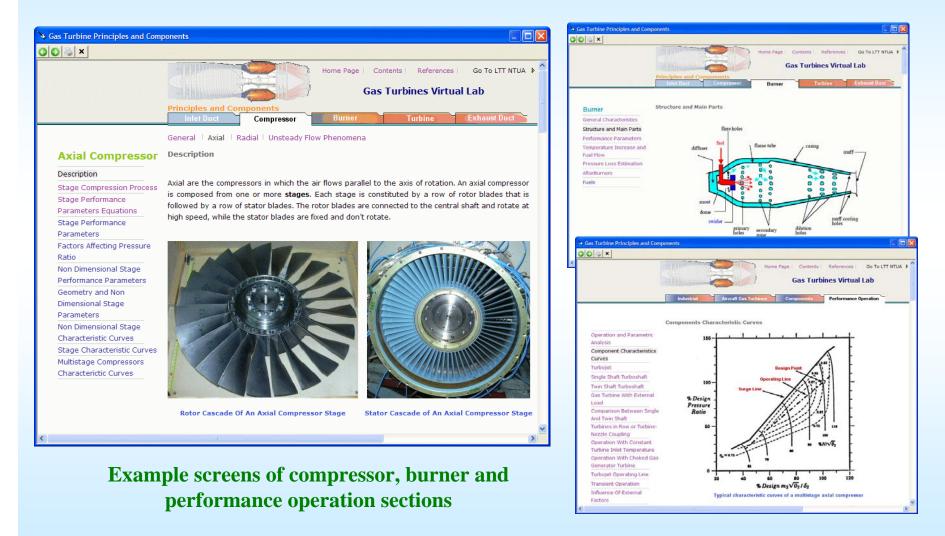

> Off Design Operation

> Virtual Test Facilities and Exercises

Further Educational Aspects-Conclusions

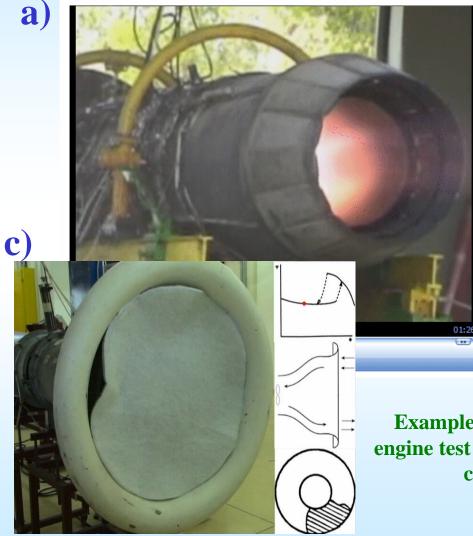
DEPARTMENT OF AERONAUTICAL SCIENCES HELLENIC AIR FORCE ACADEMY

The Virtual Lab Software



The main screen of virtual lab software.

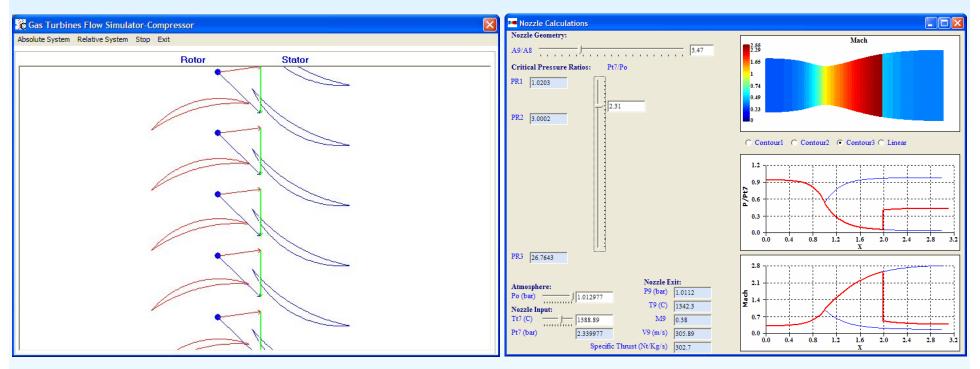
GT2006-90357


A VIRTUAL LABORATORY FOR EDUCATION ON GAS TURBINE PRINCIPLES AND OPERATION

Gas Turbine Principles and Components (I)

DEPARTMENT OF AERONAUTICAL SCIENCES HELLENIC AIR FORCE ACADEMY DEPARTMENT OF NAVAL SCIENCES HELLENIC NAVAL ACADEMY

Gas Turbine Principles and Components (II)



b)

Example screen shots from videos: a) turbojet engine test b) description of a turbojet compressor c) explanation of rotating stall.

Gas Turbine Principles and Components (III)

Flow simulation program in a compressor cascade

Nozzle calculations program

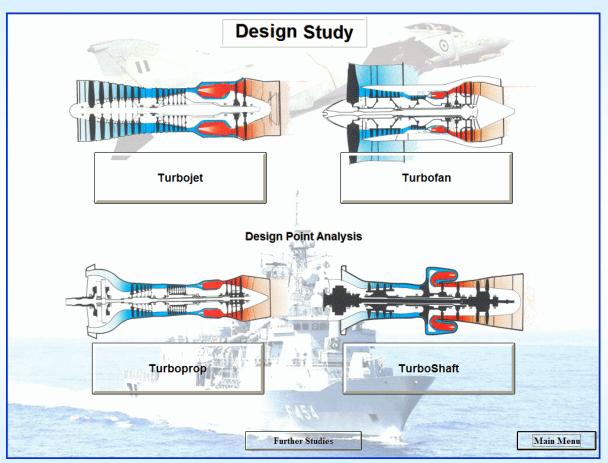
Why A Virtual Lab

Computer Representation Versus Actual Gas Turbine

The Virtual Lab Software

Gas Turbine Principles and Components

> Design Point Analysis


> Off Design Operation

> Virtual Test Facilities and Exercises

•Further Educational Aspects-Conclusions

DEPARTMENT OF AERONAUTICAL SCIENCES HELLENIC AIR FORCE ACADEMY DEPARTMENT OF NAVAL SCIENCES HELLENIC NAVAL ACADEMY

Design Point Analysis (I)

The main screen of 'Design Study' Section.

GT2006-90357 A VIRTUAL LABORATORY FOR EDUCATION ON GAS TURBINE PRINCIPLES AND OPERATION

DEPARTMENT OF AERONAUTICAL SCIENCES HELLENIC AIR FORCE ACADEMY DEPARTMENT OF NAVAL SCIENCES HELLENIC NAVAL ACADEMY

Design Point Analysis (II)		
TurboJet Design Analysis Run from File Batch Run Graphs Results Componets Design Stop Exit Help		
Performance Calculator Input Data Default Values Ideal Values Utility Constraints Default Values Utility Constraints Defa	Case Identifier Unidentified Run Add Output Data to Results Table	917 - 700 - 962.5 - 1225 - 1487.5 - 1750 917 - 787 - 7
Flying Conditions Image: Conductor of Conduction of Con	2.07(bar) 19.73(bar) 4.85(bar) 4.56(bar) 1.97(bar) 18.75(bar) 4.61(bar) 0 2 3 4 5 6 7(8 9 2.07(bar)	657 527 527 5397 267 267 267 267 267 267 267 26
Operating Point Definition IIc -j 10 Tt4 (C) j 1200 Image: AB is ON Tt7(C) j 1400 1400 Po/P9 -j 1 1 1	Description Fabre Image: Construction of the state of the s	137 7 2.0 6.4 10.8 15.2 19.6 24.0 28.4 32.8 37.2 41.6 46.0 50.4 IIc IIC
Fuel Hu (KJ/Kg) 43400 Working Medium Properties Vorking Medium Properties γc γt	Specific Thrust (N/Kg/s) 545.9 Tit 3.9 Far (Kg/Kg) 0.021 M9 2.4 FarAB (Kg/Kg) 0 V9 (m/s) 1121.3 TSFC (mg/s/N) 38.1 P9 (mbar) 264.3 Propulsive Eff. ηP (%) 70.7 T9 (C) 278.2 Themal Eff. ηT (%) 51.2 51.2 51.2	Output Data T-S, H-S Diagram Pt,Tt Diagram Engine Performance Example result (The dependence of specific thrust on compressor pressure ratio for different turbine inlet temperatures) Image: Complex Structure S
Image: constraint of the second s	Overall Eff. no (%) 36.2 Output Data T-S, H-S Diagram Pt,Tt Diagram Engine Performance	

The main screen of Turbojet Design Analysis program

GT2006-90357

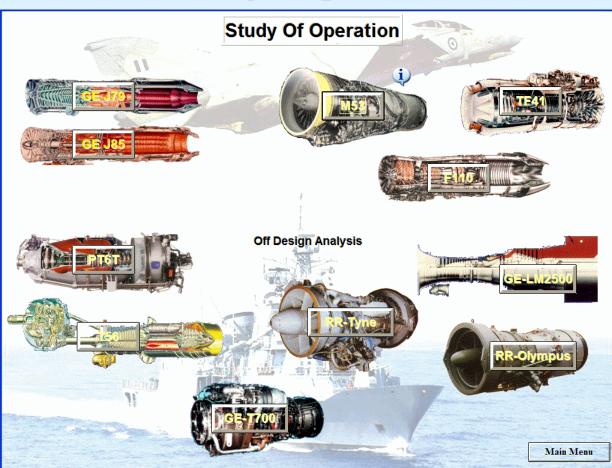
Why A Virtual Lab

Computer Representation Versus Actual Gas Turbine

The Virtual Lab Software

Gas Turbine Principles and Components

Design Point Analysis


> Off Design Operation

> Virtual Test Facilities and Exercises

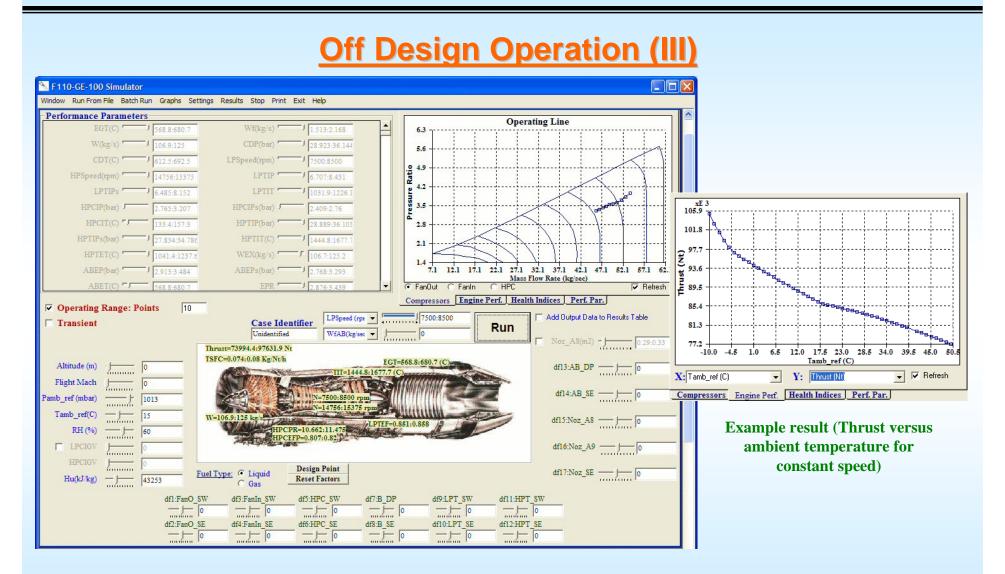
Further Educational Aspects-Conclusions

DEPARTMENT OF AERONAUTICAL SCIENCES HELLENIC AIR FORCE ACADEMY DEPARTMENT OF NAVAL SCIENCES HELLENIC NAVAL ACADEMY

Off Design Operation (I)

The main screen of 'Study of Operation' Section.

GT2006-90357 A VIRTUAL LABORATORY FOR EDUCATION ON GAS TURBINE PRINCIPLES AND OPERATION


Off Design Operation (II)

Example screen with an engine technical information

GT2006-90357

DEPARTMENT OF AERONAUTICAL SCIENCES HELLENIC AIR FORCE ACADEMY DEPARTMENT OF NAVAL SCIENCES HELLENIC NAVAL ACADEMY

The main screen of an engine performance simulator

GT2006-90357 A VIRTUAL LABORATORY FOR EDUCATION ON GAS TURBINE PRINCIPLES AND OPERATION

17

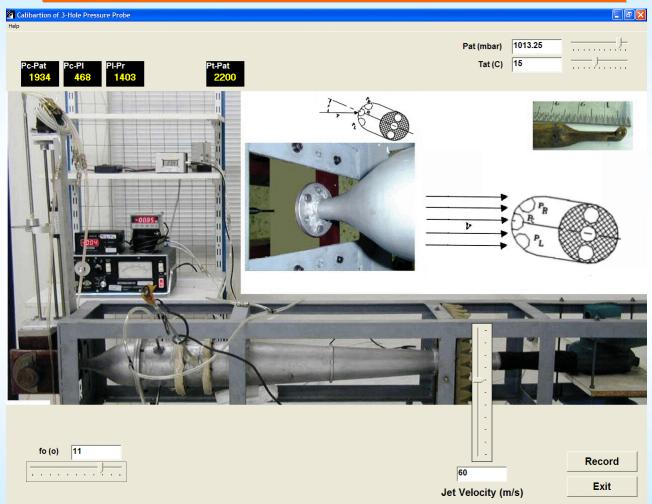
Why A Virtual Lab

Computer Representation Versus Actual Gas Turbine

The Virtual Lab Software

Gas Turbine Principles and Components

Design Point Analysis


> Off Design Operation

> Virtual Test Facilities and Exercises

Further Educational Aspects-Conclusions

DEPARTMENT OF AERONAUTICAL SCIENCES HELLENIC AIR FORCE ACADEMY

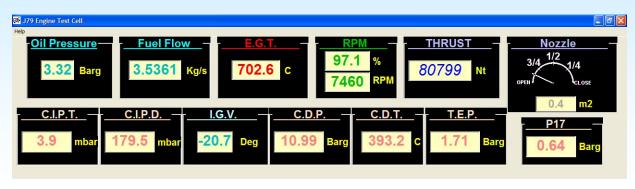
Virtual Test Facilities and Exercises (I)

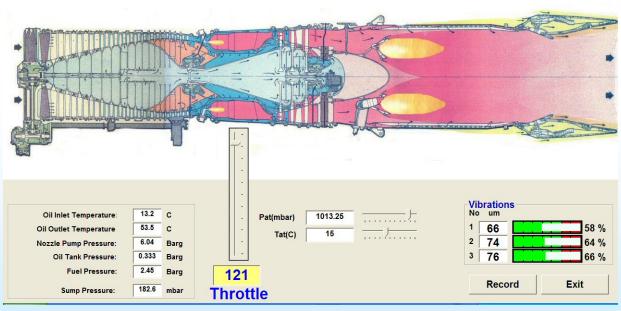
Calibration of a 3-hole pressure probe

GT2006-90357

A VIRTUAL LABORATORY FOR EDUCATION ON GAS TURBINE PRINCIPLES AND OPERATION

DEPARTMENT OF AERONAUTICAL SCIENCES HELLENIC AIR FORCE ACADEMY DEPARTMENT OF NAVAL SCIENCES HELLENIC NAVAL ACADEMY


Virtual Test Facilities and Exercises (II)


Μέτρηση Χαρακτηριστικής Βαθμίδας Αξονικού Συμπιεστή	
Pc2-Pat Pc3-Pat 673 986 Pt1-Pst1 Pc2-Pi2 254 Pc3-Pi3 1040 1271 Pat-Pt1 Pl2-Pr2 335 358 326 -461	Pat (mbar) 1013.25
R2 (mm) 175 R3 (mm) 175 S3 (mm) 135	2500
fo2 (o) 30 fo3 (o) 10	Speed (rpm)
······································	Record
	Exit

Measurement of characteristic curve of a single stage axial compressor

GT2006-90357 A VIRTUAL LABORATORY FOR EDUCATION ON GAS TURBINE PRINCIPLES AND OPERATION

Virtual Test Facilities and Exercises (III)

Reproduction of a real jet engine test cell

GT2006-90357

A VIRTUAL LABORATORY FOR EDUCATION ON GAS TURBINE PRINCIPLES AND OPERATION

Why A Virtual Lab

Computer Representation Versus Actual Gas Turbine

The Virtual Lab Software

Gas Turbine Principles and Components

Design Point Analysis

> Off Design Operation

> Virtual Test Facilities and Exercises

•Further Educational Aspects-Conclusions

Further Educational Aspects-Conclusions

•Features of the software:

Interactivity

•on-line help possibility

•batch processing

•exporting capability, interaction with other widespread tools

•it can be used from different levels of personnel.

•This software has actually been used in a classroom specifically designed for this purpose as a teaching tool.

The software can also be used for further education

•it offers an inclusive reference in the field of gas turbines principles

•it can reproduce all basic trends and behavior of a gas turbine engine, and

• it can be a useful tool for assisting the diagnosis of specific faults.