

Moisture Condensation Effect on Turbine Performance Tests

I. Roumeliotis Research Assistant K. Mathioudakis Associate Professor

1

Laboratory of Thermal Turbomachines National Technical University of Athens

Moisture Condensation Effect on Turbine Performance Tests

§Ambient Humidity and Condensation

§Test Rig Model

§Test Case

§Condensation Prediction

§Measurements Correction

§Condensation Avoidance

§Conclusions

Ambient Humidity

Moisture fraction is a function of ambient pressure, temperature and relative humidity

Humidity, Condensation and Temperature Rise

§Homogeneous and Heterogeneous Condensation

§Water droplets appear and two – phase flow with heat and mass transfer between water and the gas mixture occur

§Release of the latent heat of vaporization produces a temperature rise of the gas mixture

§Condensation is a thermodynamically irreversible process, resulting in loss of stagnation pressure

Temperature Rise

Heating of dry air by the latent heat of vapour.

Vapour quantity corresponding to various ambient conditions

Turbine Efficiency Determination

Thermodynamic Method

§Temperature Measurement

Mechanical Method

§Flow Measurement

§Gas Composition

Condensation during Expansion

Phase Diagram for Water

Moisture Condensation Effect on Turbine Performance Tests

§Ambient Humidity and Condensation

§Test Rig Model

§Test Case

§Condensation Prediction

§Measurements Correction

§Condensation Avoidance

§Conclusions

Test Rig Model

Typical Measurements

Test Rig Model

Objective

§Evaluation of isentropic efficiency as if no condensation occurs

Steps

§Prediction of condensation

§Calculation of condensed water

§Calculation of the exit conditions as if no condensation occurs

Test Rig Model

Calculation of Condensed Water

§Assuming Equilibrium Saturation at Turbine Exit
§Condensate Quantity Calculated based on Static Conditions
§Conservation of enthalpy (total to static)
§Conservation of entropy (total to static)
§Conservation of mass

Test Rig Model

Calculation of "Dry" Exit Conditions

§Assuming Instant Condensation

§Calculation of Exit Conditions as if no Condensation had Occurred

§Conservation of Energy

§Conservation of Momentum

§Conservation of Mass

Moisture Condensation Effect on Turbine Performance Tests

§Ambient Humidity and Condensation

§*Test Rig Model*

§Test Case

§Condensation Prediction

§Measurements Correction

§Condensation Avoidance

§Conclusions

Test Facility

Typical Test Rig with two additional measurements at duct exit (RH, Tt)

Raw measurements

Deviation of measured efficiency from no condensation speedline

Correlation of erroneous efficiency calculations with condensation

Condensation Prediction

Correlation of erroneous efficiency calculations with condensation

Correlation of measured Relative Humidity with Condensation

Calculated Isentropic Efficiency corrected for Condensation

Calculated Isentropic Efficiency corrected for Condensation

Moisture Condensation Effect on Turbine Performance Tests

§*Ambient Humidity and Condensation*

§*Test Rig Model*

§Test Case

§Condensation Prediction

§Measurements Correction

§Condensation Avoidance

§*Conclusions*

Minimum Temperature at Expansion Start

Conclusions

§Condensation in cold flow turbine testing alters significant the measurements

§Condensation regions may be predicted accurately without additional measurements

§The efficiency corrected for condensation is consistent with the efficiency calculated from dry measurements

§The implementation of the method is possible to assure condensation free tests