

## BAYESIAN NETWORK APPROACH FOR GAS PATH FAULT DIAGNOSIS

**C. Romessis** Research Assistant K. Mathioudakis Associate Professor

Laboratory of Thermal Turbomachines National Technical University of Athens





- The problem of Gas Path fault diagnosis
- Bayesian Belief Networks for Gas Path fault diagnosis o Elements of Bayesian Belief Networks (BBN)

o Set up of the diagnostic BBN

- Overall diagnostic procedure
- Evaluation of the network

   o Effect of noise level and operating conditions
  - o Benchmark fault cases
- Summary Conclusions



# The problem of Gas Path fault diagnosis

 Bayesian Belief Networks for Gas Path fault diagnosis o Elements of Bayesian Belief Networks (BBN)

o Set up of the diagnostic BBN

- Overall diagnostic procedure
- Evaluation of the network
   o Effect of noise level and operating conditions
  - o Benchmark fault cases
- Summary Conclusions





High-by-Pass ratio, partially mixed, turbofan engine used as a test case



## The problem of Gas Path fault diagnosis



Component faults cause significant deviations on corresponding health parameters



- The problem of Gas Path fault diagnosis
- Bayesian Belief Networks for Gas Path fault diagnosis

   Elements of Bayesian Belief Networks (BBN)

o Set up of the diagnostic BBN

- Overall diagnostic procedure
- Evaluation of the network
   o Effect of noise level and operating conditions
  - o Benchmark fault cases
- Summary Conclusions



# **Elements of Bayesian Belief Networks (BBN)**





# **Inference with Bayesian Belief Networks**





# The diagnostic BBN for Gas Path faults

Architecture extracted from system of equations:  $\overline{Y} = g(\overline{f})$ 



## **Nodes:** Gas Path variables

## **Links:** From independent to dependent variables



## **States of nodes**

#### States represent intervals of deviations from nominal value

a) States of the health parameter nodes:



#### b) States of the measurement nodes:





# A priori probabilities





# **Conditional Probability Tables**





## Summation of input-output information of BBN





- The problem of Gas Path fault diagnosis
- Bayesian Belief Networks for Gas Path fault diagnosis o Elements of Bayesian Belief Networks (BBN)

o Set up of the diagnostic BBN

# Overall diagnostic procedure

- Evaluation of the network o Effect of noise level and operating conditions
  - o Benchmark fault cases
- Summary Conclusions



## **Overall diagnostic procedure**





## **Extracting diagnostic conclusions**







- The problem of Gas Path fault diagnosis
- Bayesian Belief Networks for Gas Path fault diagnosis o Elements of Bayesian Belief Networks (BBN)

o Set up of the diagnostic BBN

- Overall diagnostic procedure
- Evaluation of the network
   o Effect of noise level and operating conditions
  - o Benchmark fault cases
- Summary Conclusions



# Simulation of fault cases for evaluation



#### Measurement data are simulated through an Engine Performance Model and random noise



# **BBN** behavior in the presence of Noise

## How the diagnostic ability is affected by the presence of noise?

## Noise 'blurs' the diagnosis

# Filtering of measurement data may improve significantly the performance of the network



LABORATORY OF THERMAL TURBOMACHINES NATIONAL TECHNICAL UNIVERSITY OF ATHENS

# **Effect of Noise Level**





# **Diagnosis at different Operating Conditions**

# How the diagnostic ability is affected at different operating conditions?

## Diagnostic ability unaffected for operating points ranging from take-off to cruise conditions



# **Considered Operating Conditions** Representation of a flight envelope





# **Effect of Operating Conditions**

#### The considered network used for the whole flight envelope





# **Effect of Operating Conditions**

A pair of networks considered to cover the flight envelope





# **Benchmark fault cases**

| Fault Case | Affected components |  |
|------------|---------------------|--|
| а          | L PC                |  |
| b          |                     |  |
| С          |                     |  |
| d          | HPC                 |  |
| е          |                     |  |
| f          |                     |  |
| g          | HPT                 |  |
| h          |                     |  |
| 1          |                     |  |
| j          | I PT                |  |
| k          | <b>L</b> , ,        |  |
| 1          |                     |  |
| т          |                     |  |
| n          | Nozzle              |  |
| 0          |                     |  |



## **Evaluation of BBN on the benchmark fault cases**

| Fault | Actual Deviations of | Factors found          |                 |
|-------|----------------------|------------------------|-----------------|
| Case  | Health Parameters    | significantly deviated | Class Diagnosis |
| а     | SW2, SE2, SW12, SE12 | SW12                   | sD              |
| b     | SE12                 | SE12                   | fD              |
| С     | SW26, SE26           | SE2                    | sD              |
| d     | SE26                 | SE26                   | fD              |
| е     | SW26                 | SW26                   | fD              |
| f     | SW41                 | SW41                   | fD              |
| g     | SW41, SE41           | SW41, SE41             | fD              |
| h     | SE41                 | SE41                   | fD              |
| 1     | SE49                 | SE49                   | fD              |
| j     | SW49, SE49           | SE41                   | sD              |
| k     | SW49                 | SW49                   | fD              |
| 1     | SW49, SE49           | SW49, SE49             | fD              |
| т     | A8IMP                | A8IMP                  | fD              |
| n     | A8IMP                | A8IMP                  | fD              |
| 0     | A8IMP                | A8IMP                  | fD              |



## **Evaluation of BBN on the benchmark fault cases** BBN with additional measurements (P42, T42)

| Fault | Actual Deviations of | Factors found          |                 |
|-------|----------------------|------------------------|-----------------|
| Case  | Health Parameters    | significantly deviated | Class Diagnosis |
| а     | SW2, SE2, SW12, SE12 | SW12                   | sD              |
| b     | SE12                 | SE12                   | fD              |
| С     | SW26, SE26           | SW26, SE2              | sD              |
| d     | SE26                 | SE26                   | fD              |
| е     | SW26                 | SW26                   | fD              |
| f     | SW41                 | SW41                   | fD              |
| g     | SW41, SE41           | SW41, SE41             | fD              |
| h     | SE41                 | SE41                   | fD              |
| 1     | SE49                 | SE49                   | fD              |
| j     | SW49, SE49           | SW49, SE49             | fD              |
| k     | SW49                 | SW49                   | fD              |
|       | SW49, SE49           | SW49, SE49             | fD              |
| т     | A8IMP                | A8IMP                  | fD              |
| n     | A8IMP                | A8IMP                  | fD              |
| 0     | A8IMP                | A8IMP                  | fD              |



## **Evaluation of BBN on the benchmark fault cases BBN with modified a-priori probabilities**

| Fault | Actual Deviations of | Factors found          |                 |
|-------|----------------------|------------------------|-----------------|
| Case  | Health Parameters    | significantly deviated | Class Diagnosis |
| а     | SW2, SE2, SW12, SE12 | SW12                   | sD              |
| b     | SE12                 | SE12                   | fD              |
| С     | SW26, SE26           | SW26, SE26             | fD              |
| d     | SE26                 | SE26                   | fD              |
| е     | SW26                 | SW26                   | fD              |
| f     | SW41                 | SW41                   | fD              |
| g     | SW41, SE41           | SW41, SE41             | fD              |
| h     | SE41                 | SE41                   | fD              |
| 1     | SE49                 | SE49                   | fD              |
| j     | SW49, SE49           | SE41                   | sD              |
| k     | SW49                 | SW49                   | fD              |
| 1     | SW49, SE49           | SW49, SE49             | fD              |
| т     | A8IMP                | A8IMP                  | fD              |
| n     | A8IMP                | A8IMP                  | fD              |
| 0     | A8IMP                | A8IMP                  | fD              |



- The problem of Gas Path fault diagnosis
- Bayesian Belief Networks for Gas Path fault diagnosis o Elements of Bayesian Belief Networks (BBN)

o Set up of the diagnostic BBN

- Overall diagnostic procedure
- Evaluation of the network
   o Effect of noise level and operating conditions
  - o Benchmark fault cases

# Summary - Conclusions



# **Summary - Conclusions**

Easy to built network from mathematical models

•Ability to handle the problem of fewer measurements than parameters in GPA

•Wide range of effective diagnosis

•Ability to incorporate information from sources of different nature