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The problem of Gas Path fault diagnosisThe problem of Gas Path fault diagnosis

High-by-Pass ratio, partially mixed, turbofan engine used as a test case

Detect health parameters that may deviate 
due to component faults
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The problem of Gas Path fault diagnosisThe problem of Gas Path fault diagnosis

Component faults cause significant deviations 
on corresponding health parameters

Δfi (%)

Large
deviations

(not examined)

Not
Significant
deviations

Significant
deviations

Large
deviations

(not examined)
Significant
deviations

0 +a-a-b +b



6Bayesian Network Approach for Gas Path Fault Diagnosis

LABORATORY OF THERMAL TURBOMACHINES                             
NATIONAL TECHNICAL UNIVERSITY OF ATHENS

Evaluation of the network
o Effect of noise level and operating conditions 

o Benchmark fault cases 

Summary - Conclusions 

Bayesian Network Approach for Gas Path Fault DiagnosisBayesian Network Approach for Gas Path Fault Diagnosis

Bayesian Belief Networks for Gas Path fault diagnosisBayesian Belief Networks for Gas Path fault diagnosis

The problem of Gas Path fault diagnosis 

oo Elements of Bayesian Belief Networks (BBN) Elements of Bayesian Belief Networks (BBN) 

oo Set up of the diagnostic BBN Set up of the diagnostic BBN 

Overall diagnostic procedure



7Bayesian Network Approach for Gas Path Fault Diagnosis

LABORATORY OF THERMAL TURBOMACHINES                             
NATIONAL TECHNICAL UNIVERSITY OF ATHENS

Elements of Bayesian Belief Networks (BBN)Elements of Bayesian Belief Networks (BBN)

HPT efficiency

Normal
Abnormal

TIT

Normal
Abnormal

HPT flow factor

Normal
Abnormal

 HPT efficiency
Normal 0.90
Abnormal 0.10

HPT flow factor
Normal 0.80
Abnormal 0.20

 HPT efficiency       Normal       Abnormal
HPT flow factor Normal Abnormal Normal Abnormal

Normal 0.95 0.60 0.70 0.20
Abnormal 0.05 0.40 0.30 0.80

A BBN consists of:A BBN consists of:

--NodesNodes
 --LinksLinks
 --StatesStates
 --CPTsCPTs
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Inference with Bayesian Belief NetworksInference with Bayesian Belief Networks

HPT efficiency

    Normal
Abnormal

TIT

HPT flow factor

    Normal
Abnormal

    Normal
AbnormalOnce evidence is available, Once evidence is available, 

BBN estimates probabilities BBN estimates probabilities 
for all states of nodesfor all states of nodes
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The diagnostic BBN for Gas Path faultsThe diagnostic BBN for Gas Path faults

NodesNodes: Gas Path variables: Gas Path variables
LinksLinks: From independent to dependent variables: From independent to dependent variables

Architecture extracted from system of equations:Architecture extracted from system of equations: )( fgY =

SE12SW12 SE2SW2 SE26SW26 SE41SW41 SE49SW49 A8IMP

XNLP XNHP P13 P3 T3 T6 T13
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States of nodesStates of nodes
States represent intervals of deviations from nominal valueStates represent intervals of deviations from nominal value

a) States of the health parameter nodes:a) States of the health parameter nodes:

b) States of the measurement nodes:b) States of the measurement nodes:
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A priori probabilitiesA priori probabilities

High aHigh a--priori probability priori probability 
for not significant deviations for not significant deviations Low aLow a--priori probability priori probability 

for significant deviations for significant deviations 

-2.5 2.5 Δfi(%)-0.5 -0.167 0.50.167-2.167 -1.833 1.833 2.167
. . . . . .
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Conditional Probability TablesConditional Probability Tables
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Summation of inputSummation of input--output information of BBNoutput information of BBN
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Overall diagnostic procedureOverall diagnostic procedure
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Extracting diagnostic conclusionsExtracting diagnostic conclusions

Parameter Parameter NOT significantlyNOT significantly
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Simulation of fault cases for evaluationSimulation of fault cases for evaluation

EPM Faulty operation;
f≠0

uactual

Y´

+Yactual nY

u´

+nu

Measurement data are simulated throughMeasurement data are simulated through
 an Engine Performance Modelan Engine Performance Model

 and random noiseand random noise
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BBN behavior in the presence of Noise BBN behavior in the presence of Noise 

Noise ‘blurs’
 

the diagnosis 

Filtering of measurement data may improve 
significantly the performance of the network

How the diagnostic ability is affected by the presence of noise?How the diagnostic ability is affected by the presence of noise?
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Effect of Noise Level
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Diagnosis at different Operating ConditionsDiagnosis at different Operating Conditions

Diagnostic ability unaffected for operating points ranging 
from take-off to cruise conditions

How the diagnostic ability is affected How the diagnostic ability is affected 
at different operating conditions?at different operating conditions?



22Bayesian Network Approach for Gas Path Fault Diagnosis

LABORATORY OF THERMAL TURBOMACHINES                             
NATIONAL TECHNICAL UNIVERSITY OF ATHENS

Considered Operating Conditions 
Representation of a flight envelope
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Effect of Operating Conditions
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Effect of Operating Conditions
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Benchmark fault casesBenchmark fault cases
Fault Case Affected components
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Evaluation of BBN on the benchmark fault casesEvaluation of BBN on the benchmark fault cases

Fault
Case

Actual Deviations of
Health Parameters

Factors found
significantly deviated Class Diagnosis

a SW2, SE2, SW12, SE12 SW12 sD
b SE12 SE12 fD
c SW26, SE26 SE2 sD
d SE26 SE26 fD
e SW26 SW26 fD
f SW41 SW41 fD
g SW41, SE41 SW41, SE41 fD
h SE41 SE41 fD
I SE49 SE49 fD
j SW49, SE49 SE41 sD
k SW49 SW49 fD
l SW49, SE49 SW49, SE49 fD

m A8IMP A8IMP fD
n A8IMP A8IMP fD
o A8IMP A8IMP fD
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Evaluation of BBN on the benchmark fault casesEvaluation of BBN on the benchmark fault cases
BBN with additional measurements (P42, T42)BBN with additional measurements (P42, T42)

Fault
Case

Actual Deviations of
Health Parameters

Factors found
significantly deviated Class Diagnosis

a SW2, SE2, SW12, SE12 SW12 sD
b SE12 SE12 fD
c SW26, SE26 SW26, SE2 sD
d SE26 SE26 fD
e SW26 SW26 fD
f SW41 SW41 fD
g SW41, SE41 SW41, SE41 fD
h SE41 SE41 fD
I SE49 SE49 fD
j SW49, SE49 SW49, SE49 fD
k SW49 SW49 fD
l SW49, SE49 SW49, SE49 fD

m A8IMP A8IMP fD
n A8IMP A8IMP fD
o A8IMP A8IMP fD
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Evaluation of BBN on the benchmark fault casesEvaluation of BBN on the benchmark fault cases
BBN with modified aBBN with modified a--priori probabilitiespriori probabilities
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Factors found
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Summary Summary -- ConclusionsConclusions

•Easy to built network from mathematical models

•Ability to handle the problem of fewer 
measurements than parameters in GPA

•Wide range of effective diagnosis

•Ability to incorporate information from sources of 
different nature
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