

NON-LINEAR ENGINE COMPONENT FAULT DIAGNOSIS FROM A LIMITED NUMBER OF MEASUREMENTS USING A COMBINATORIAL APPROACH

N. Aretakis
Research associate

K. Mathioudakis
Associate Professor

A. Stamatis
Research associate

Laboratory of Thermal Turbomachines National Technical University of Athens

NON-LINEAR ENGINE COMPONENT FAULT DIAGNOSIS FROM A LIMITED NUMBER OF MEASUREMENTS USING A COMBINATORIAL APPROACH

- § Definition of the diagnostic problem
- § The principle of the method
 - **§Types of faulty situations**
 - **§The basis of the method: Adaptive Modeling Technique**
 - **§Engine layout**
 - **§Diagnostic approach**
- § Application Test Cases
- **§ Summary Conclusions**

Definition Of The Diagnostic Problem

Objective:

Identify component faults, when few measured quantities are available (fewer measurements than unknown "health indices")

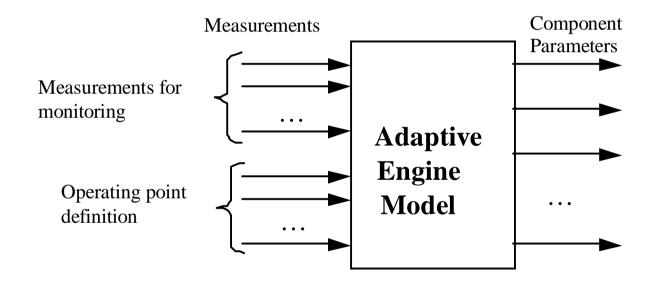
Solution Approach Examined:

Combinatorial approach based on isolating the actual fault identity from all possible solutions (Heuristic data evaluation).

The Diagnostic Problem Examined

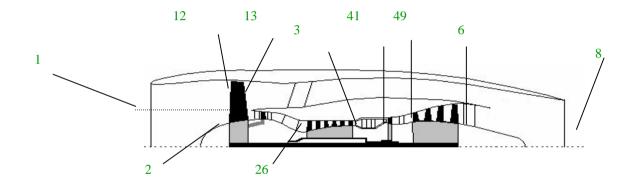
Types of Faulty Situations:

I. Engine Deterioration: all individual engine components degrades with time


- II. Engine Component Faults: changes in one or more components leading to degradation of their performance
- III. Individual Engine Identification: determination of the performance of all individual components of a particular engine

The present method is dealing with Problem II

The Basis of the Method


Adaptive Modeling technique

The Principle Of The Method

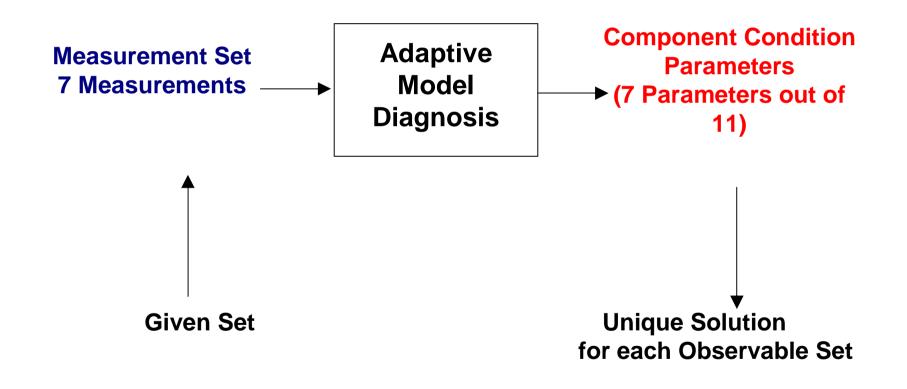
The method will be presented through its implementation on a modern type jet engine: A partially mixed, high bypass ratio turbofan

Layout of a turbofan engine and station numbering for positions of interest.

Typical Monitoring Sets

Measurements

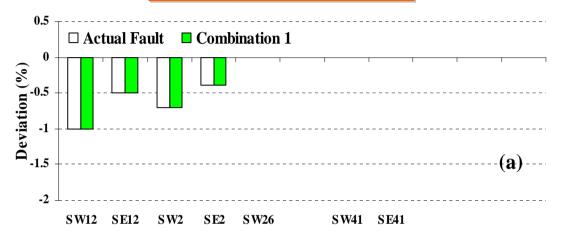
	Measurements for Monitoring	Symbol
1	LP Shaft Rpm	XNLP
2	HP Shaft Rpm	XNHP
3	Fan Outer Pressure	P ₁₃
4	HP Compressor Outlet Pressure	P ₃
5	HP Compressor Outlet Temperature	T ₃
6	LP Turbine Outlet Temperature	T ₆
7	Fan Outer Temperature	T ₁₃
	Operation Point Definition	
1	Ambient Pressure	Pamb
2	Total Inlet Pressure	P ₁
3	Total Inlet Temperature	T ₁
4	Fuel Flow Rate	WFE

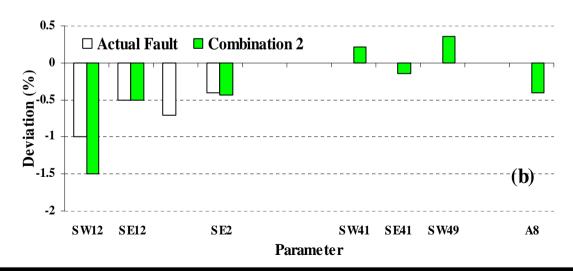

Component Condition Parameters

Component	Health Parameter	Symbol	No
Outer For	Flow Factor	SW12	1
Outer Fan	Efficiency Factor	SE12	2
Fan Inner	Flow Factor	SW2	3
ran innei	Efficiency Factor	SE2	4
HPC	Flow Factor	SW26	5
HPC	Efficiency Factor	SE26	6
HPT	Flow Factor	SW41	7
ПРІ	Efficiency Factor	SE41	8
LPT	Flow Factor	SW49	9
LFI	Efficiency Factor	SE49	10
Nozzle	Exhaust Area	A8	11

$$SW_i = \frac{W_i \cdot \sqrt{T_i}}{P_i} / \left(\frac{W_i \cdot \sqrt{T_i}}{P_i}\right)_{ref}$$
 $SE_i = \frac{h_i}{h_{iref}}$

The Principle Of The Method

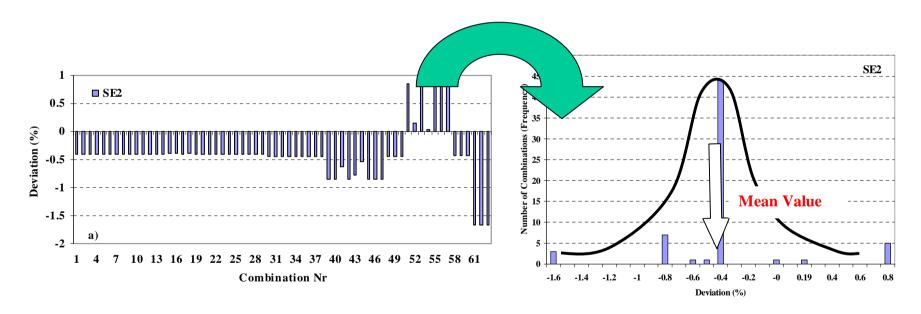

Define the set of possible situations

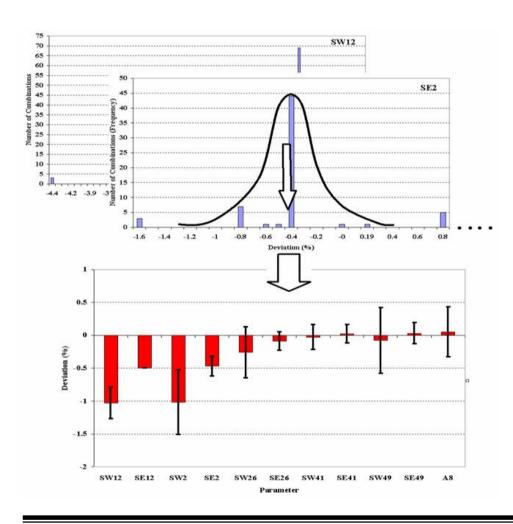

F Apply procedure for all different parameter combinations.

(Present Example: All possible combinations
$$\binom{11}{7} = 330$$
)

- F Derive Fault Signatures for each parameter combination.
- F Combinations may or may not contain the examined fault.

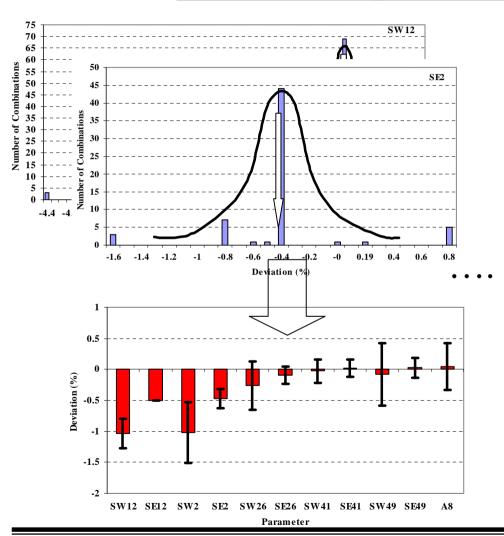
Example Situations





Statistical analysis of all possible solutions

F Obtain parameter distribution from calculated values for different combinations (for every single parameter).


Produce most probable fault signature

F Evaluate mean value and standard deviation for each individual parameter.

F Combine them to produce the fault signature

Produce most probable fault signature

F Evaluate mean value and standard deviation for each individual parameter.

F Combine them to produce the fault signature

Criteria for Faulty Component Isolation (1st Pass)

FA Diagnostic index is derived for each component parameter

$$DI_{x_i} = \frac{\left| \overline{x}_i \right|}{S_{\overline{x}}}$$

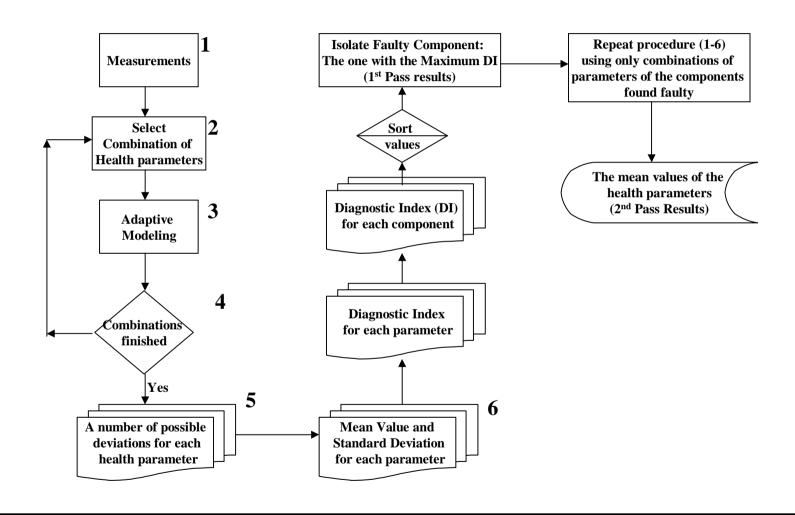
F The Diagnostic index is derived for each component.

$$Diag_i = \sqrt{DI_{1i}^2 + DI_{2i}^2}$$

FA faulty component is identified as the one that corresponds to the diagnostic index of maximum value

Improvement of Estimation of Deviations

2nd Pass:


F The procedure is repeated, using only combinations containing the health parameters of the components found faulty from 1st pass.

Best fit approach:

F The magnitude of deviations of the parameters of the component found faulty are derived, minimizing a function of the following form.

$$OF = \sum_{i=1}^{M} \left[\frac{1}{\sigma_{Y_i}} \frac{Y_i^{model} - Y_i^{measured}}{Y_i^{measured}} \right]^2$$

Block Diagram Of The Method

Application Test Cases

		Perce	nt Deviat	tions of he	alth indic	es Valu	es for si	mulatin	g faults		
	Outer Fan		Outer Fan Fan Inner		HE	C	HE	PT	LF	Nozzle	
Fault ID	SW12	SE12	SW2	SE2	SW26	SE26	SW41	SE41	SW49	SE49	A8
Α	-1	-0.5	-0.7	-0.4							
В		-1									
С					-1	-0.7					
D						-1					
E					-1						
F							1				
G							-1	-1			
н								-1			
ı										-1	
J									-1	-0.4	
K									-1		
L									1	-0.6	
M											1
N											-1
0											2

Application Test Cases

Data sets:

F Two types of data sets were used:

- (a) Noise free data in order to examine how the method performs when an exact solution exist
- (b) Data to which noise was added for a more realistic application

Sensor	Pamb	P1	T1	WFE	XNLP	XNHP	P ₁₃	P ₃	T ₃	T ₆	T ₁₃
3 sigma	100 Pa	100 Pa	2 K	2 gr/s	6 rpm	12 rpm	300 Pa	5 KPa	2 K	2 K	2 K

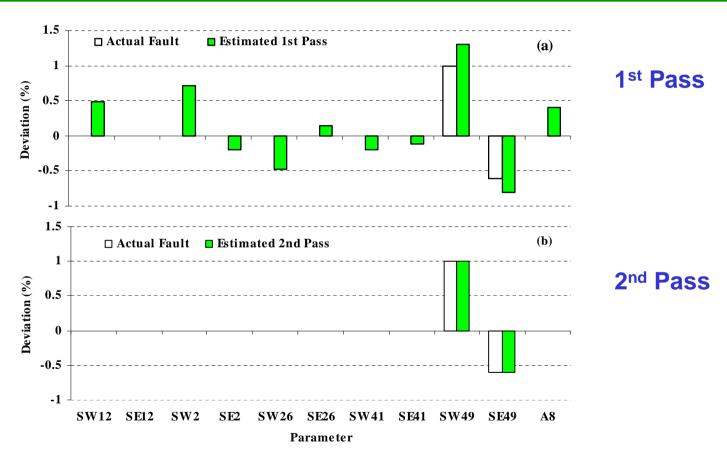
F A sequence of different flight conditions (50 sets) simulating real operation was created using the engine model for each examined fault.

Application Test Cases

Overall Identification Results:

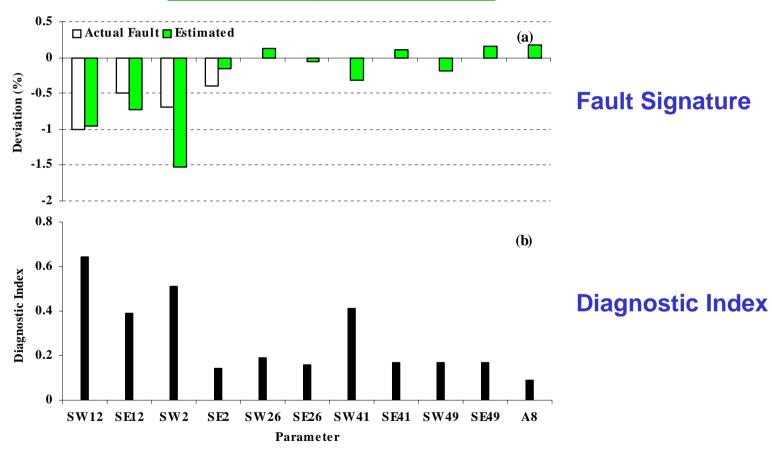
Fault	Α	В	С	D	Е	F	G	Н	ı	7	K	L	М	Z	0
Noise Free Data	1	1	0	1	1	1	1	1	1	0	1	1	1	1	1
Noisy Data	1	1	1	1	1	1	1	1	1	0	0	1	1	1	1

1: correct detection

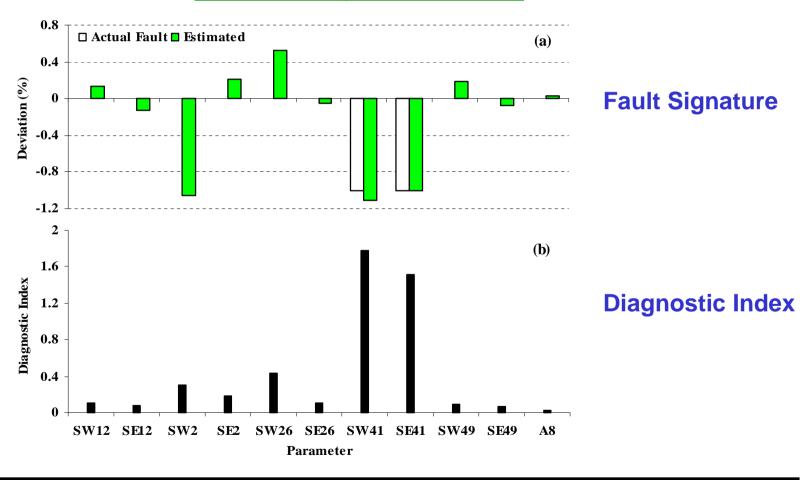

0: incorrect detection

F The proposed method allows the identification of a significant percentage of the examined faults

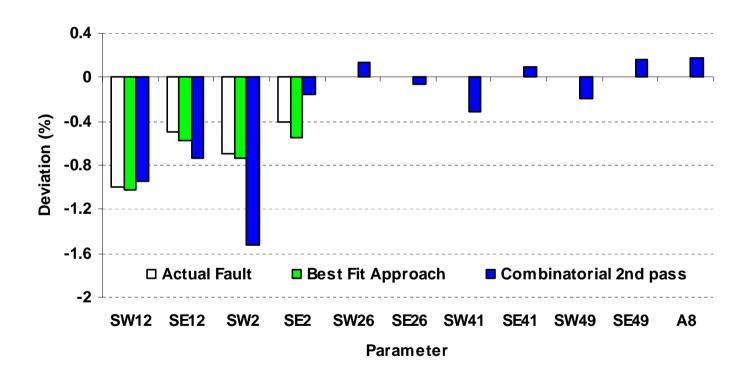
F Faults C (HPC fault) and J (LPT fault) seems to be non-identifiable (observability problem)


F The correct detection of fault C and the failure for fault K for noisy data sets is due to information counterfeiting because of the presence of noise

Comparison between 1st Pass and 2nd Pass (Fault L, Noise Free Data)

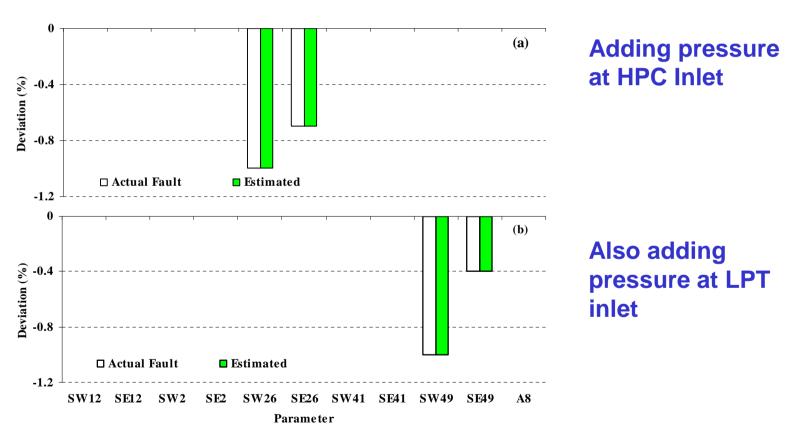

Application Test Cases

Fault A, Noisy Data, 2nd Pass


Application Test Cases

Fault G, Noisy Data, 2nd Pass

Comparison between 2nd Pass and Best Fit (Fault A, Noisy Data)



Estimation of Deviations (Best Fit approach)

Fault						Fault			
A	Act.	SW12: -1	SE12: -0.5	SW2: -0.7	SE2: -0.4	ı	Act.	SW49: 0	SE49: -1
	Est.	-1	-0.6	-0.7	-0.6	l	Est.	0	-1.1
В	Act.	SE12: -1	SW2: 0			L	Act.	SW49: 1	SE49:-0.
	Est.	-1.3	-0. 1				Est.	1	-0.7
D	Act.	SW26: 0	SE26: -1			М	Act.	A8: 1	
D	Est.	0.2	-1.1			IVI	Est.	1	
E	Act.	SW26: -1	SE26: 0			N	Act.	A8: -1	
_	Est.	-1	-0. 1			IN	Est.	-1	
F	Act.	SW41: 1	SE41: 0			0	Act.	A8: 2	
-	Est.	1	0				Est.	2	
G	Act.	SW41: -1	SE41: -1						
G	Est.	-1	-1.1						
н	Act.	SW41: 0	SE41: -1						
П	Est.	0	-1.1						

Estimated fault signatures for Fault C and J when additional Measurements are used (2nd Pass, Noise Free Data)

Conclusions

üA method for diagnosing faults in the components of a jet engine was presented, suitable for cases that a limited instrumentation set is available.

üThe method can both isolate and identify the fault in individual components.

üThe method was tested on an extensive set of component faults, with an instrumentation set typical for today's engines.

ült was found that it can detect and identify correctly faults in all components, with some limitation for some HPC and LPT faults.

ült was shown that this weakness is eliminated with the addition of inter-spool measurements, while keeping the measurement set realistic.