

SETTING UP OF A PROBABILISTIC NEURAL NETWORK FOR SENSOR FAULT DETECTION INCLUDING OPERATION WITH COMPONENT FAULTS

C. Romessis Research Assistant K. Mathioudakis Associate Professor

Laboratory of Thermal Turbomachines National Technical University of Athens

Setting Up Of A Probabilistic Neural Network For Sensor Fault Detection Including Operation With Component Faults

§ Definition of the diagnostic problem

§ Probabilistic Neural Network Architecture

§ PNN diagnostic ability

- o Effect of noise level and operating conditions
- o Minimum detectable sensor biases
- o Multiple sensor faults
- o Sensor fault detection in a faulty engine
- o Sensor fault detection in a deteriorating engine
- **§** Summary Conclusions

Setting Up Of A Probabilistic Neural Network For Sensor Fault Detection Including Operation With Component Faults

§Definition of the diagnostic problem

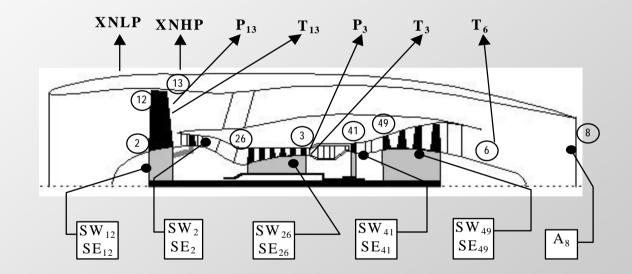
§ Probabilistic Neural Network Architecture

§ PNN diagnostic ability

- o Effect of noise level and operating conditions
- o Minimum detectable sensor biases
- o Multiple sensor faults
- o Sensor fault detection in a faulty engine
- o Sensor fault detection in a deteriorating engine
- **§** Summary Conclusions

Definition of the Diagnostic Problem

Determine if the readings from a number of instruments are correct or not



High-by-Pass ratio, partially mixed, turbofan engine used as a test case

Setting Up Of A Probabilistic Neural Network For Sensor Fault Detection Including Operation With Component Faults

§ Definition of the diagnostic problem

§ Probabilistic Neural Network Architecture

§ PNN diagnostic ability

o Effect of noise level and operating conditions

o Minimum detectable sensor biases

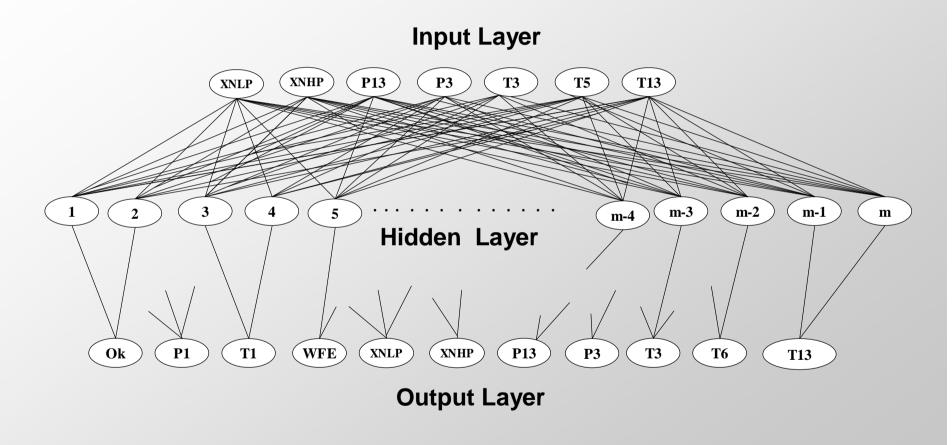
o Multiple sensor faults

o Sensor fault detection in a faulty engine

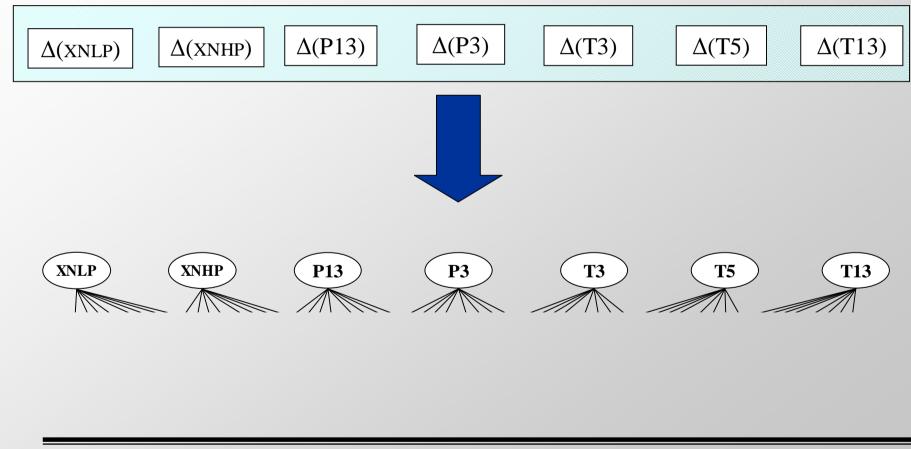
o Sensor fault detection in a deteriorating engine

§ Summary - Conclusions

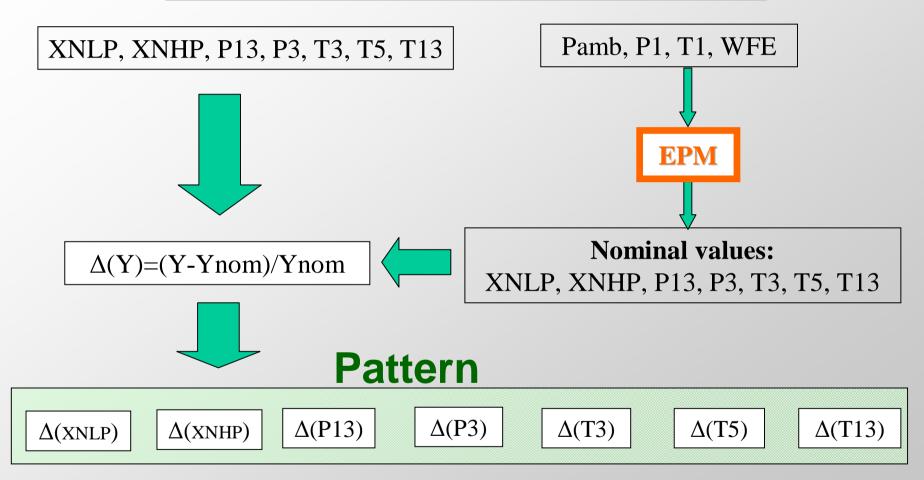
Structure of the Probabilistic Neural Network



Input layer: Deltas of the measurements



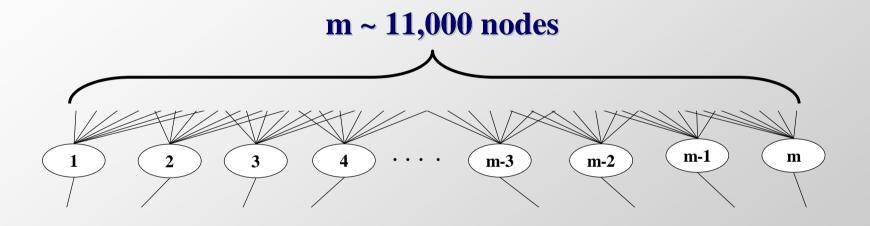
Pattern Generation from Measurements



Turbofan Engine Modeling

- **ØQuantities defining the operating Conditions: §Fuel consumption § Ambient Pressure §Engine Inlet Conditions (pressure, temperature) ØFault Parameters: §Flow factors along the engine** §Efficiency factors along the engine §Exhaust area Ø Measured quantities: § Shafts' speed (low and high pressure)
 - **§ Pressures and temperatures along the engine**

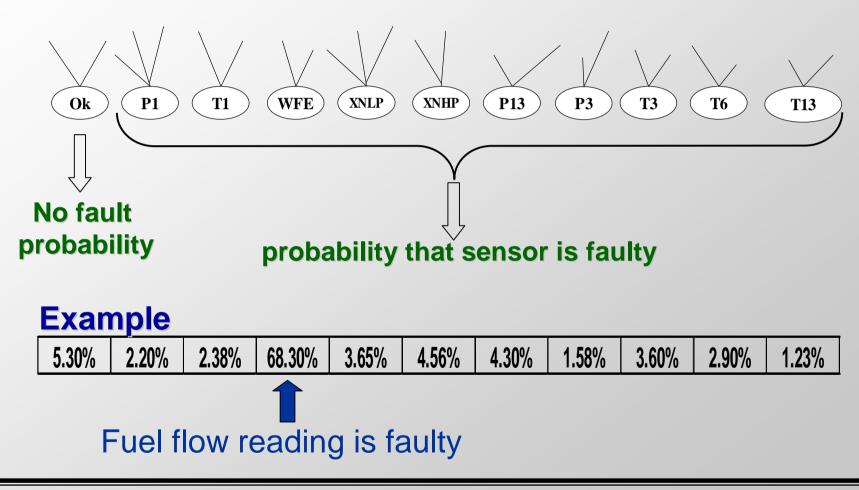
Hidden layer: Training patterns



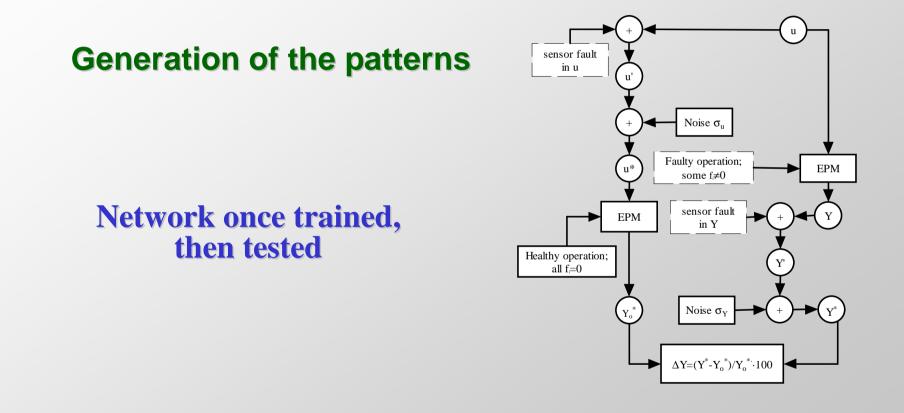
Each node: A Noise-free pattern produced by simulation

LABORATORY OF THERMAL TURBOMACHINES NATIONAL TECHNICAL UNIVERSITY OF ATHENS

Output layer: Considered classes



Materializing the Network



Aspects Examined to Assess Diagnostic Potential

§Effect of **Noise**

§Diagnosis at different **Operating Conditions**

§ Minimum detectable sensor biases

§ Multiple Sensor Faults detection

§ Simultaneous presence of <u>Component Faults</u>

§ Drifting **Deterioration of Fault Parameters**

Aspects Examined to Assess Diagnostic Potential

Have been considered for:

A. Patterns for training the network

B. Patterns for testing the network

Setting Up Of A Probabilistic Neural Network For Sensor Fault Detection Including Operation With Component Faults

§ Definition of the diagnostic problem

§ Probabilistic Neural Network Architecture

§ PNN diagnostic ability

o Effect of noise level and operating conditions

o Minimum detectable sensor biases

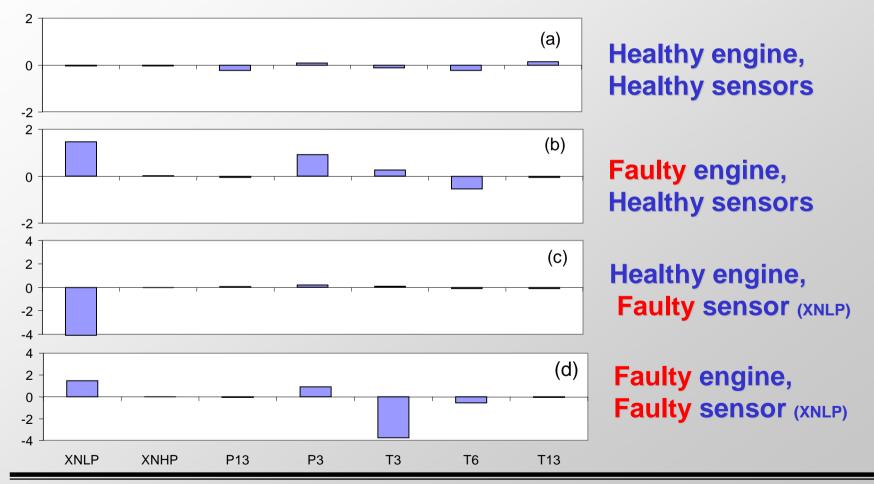
o Multiple sensor faults

o Sensor fault detection in a faulty engine

o Sensor fault detection in a deteriorating engine

§ Summary - Conclusions

Examples of Test Patterns



PNN behavior in the presence of Noise

How the diagnostic ability is affected by the presence of noise?

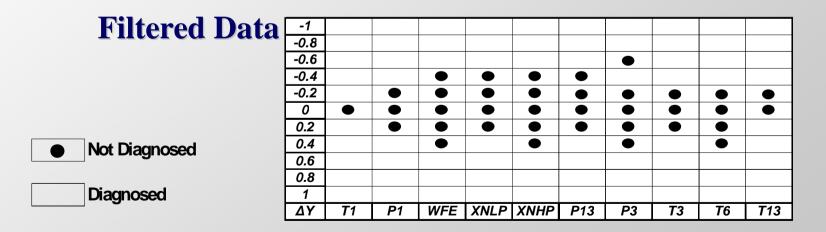
Noise 'blurs' the diagnosis

A simple filtering procedure 'narrows' the region of ineffective diagnosis

LABORATORY OF THERMAL TURBOMACHINES NATIONAL TECHNICAL UNIVERSITY OF ATHENS

Effect of Noise Level

Noisy Data	-1						•				
	-0.8										
	-0.6		•				•				
	-0.4		•				\bullet		•	•	
	-0.2	\bullet	•				\bullet		lacksquare		\bullet
	0		\bullet			\bullet	\bullet		\bullet	\bullet	\bullet
	0.2	\bullet					\bullet		\bullet	\bullet	
	0.4			\bullet		\bullet	\bullet		•	\bullet	\bullet
	0.6	\bullet	•	•			•		•	\bullet	
	0.8	\bullet		•		\bullet					
	1						\bullet		•		
	ΔΥ	T1	P1	WFE	XNLP	XNHP	P13	P3	T3	T6	T13

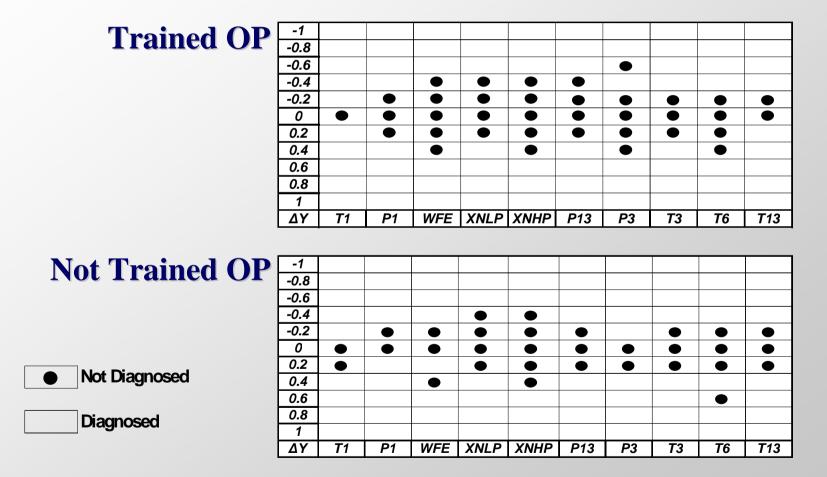


Diagnosis at different Operating Conditions

How the diagnostic ability is affected at different operating conditions?

Diagnostic ability unaffected for 'neighboring' operating conditions

Effect of Operating Conditions



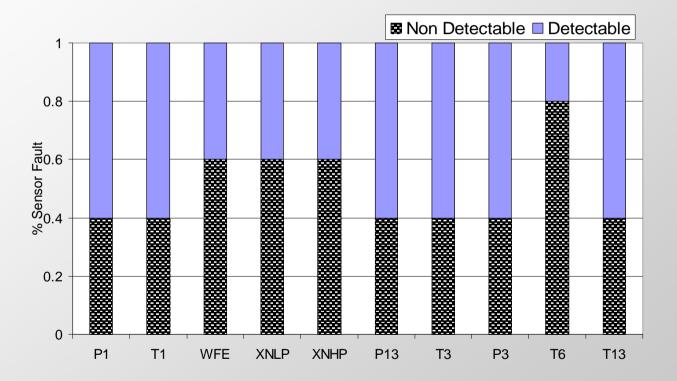
Minimum detectable sensor biases

Which are the minimum sensor biases that can be detected?

Biases greater than 0.4% - 0.8% are detected for all sensors

Bias Levels usually represent 2-4 times the considered noise levels

Minimum detectable sensor biases



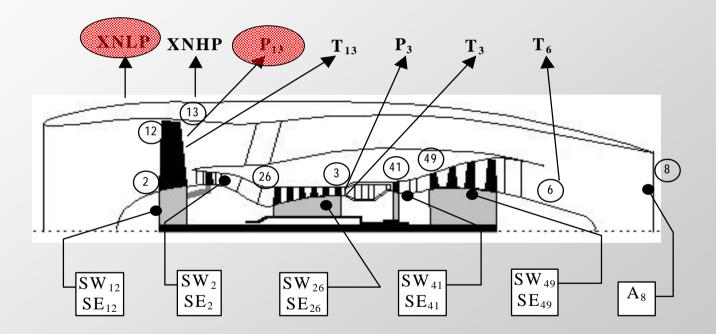
Multiple Sensor Faults detection

How, possibly, multiple sensor faults can be detected?

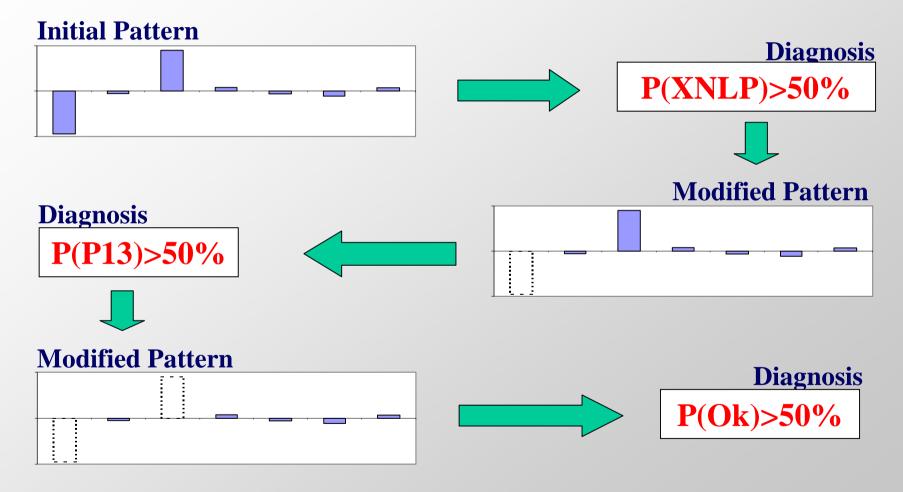
Faults in up to three different sensors are detected efficiently

Sensors of measurements for condition monitoring

Multiple sensor faults

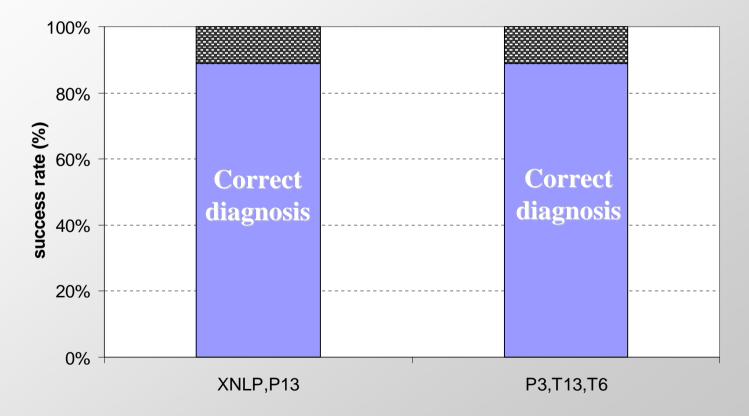


Multiple sensor faults: Diagnostic procedure



Sample result

Success rate for Multiple sensor faults



Setting up of a Probabilistic neural Network for sensor fault detection including operation with component faults

Simultaneous presence of Component Faults

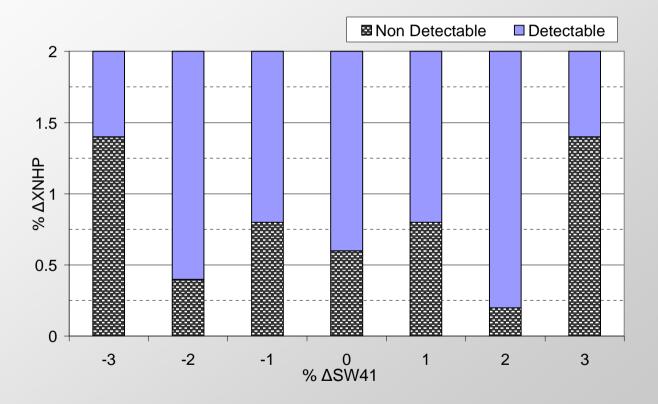
How the diagnostic ability is affected at the simultaneous presence of Component Faults ?

Detectable biases are larger

Sensor Biases larger than ±1% are detectable for usual component faults

LABORATORY OF THERMAL TURBOMACHINES NATIONAL TECHNICAL UNIVERSITY OF ATHENS

Sensor fault detection in a faulty engine

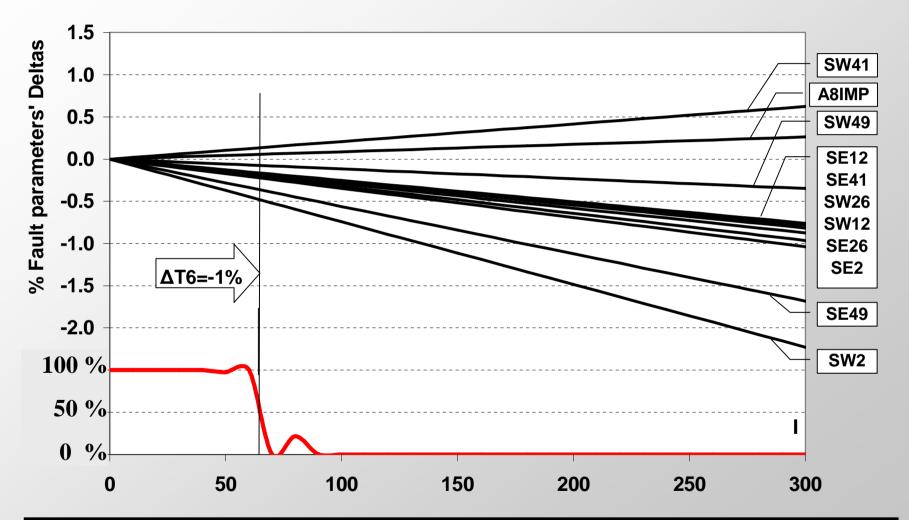


Drifting Deterioration of Fault Parameters

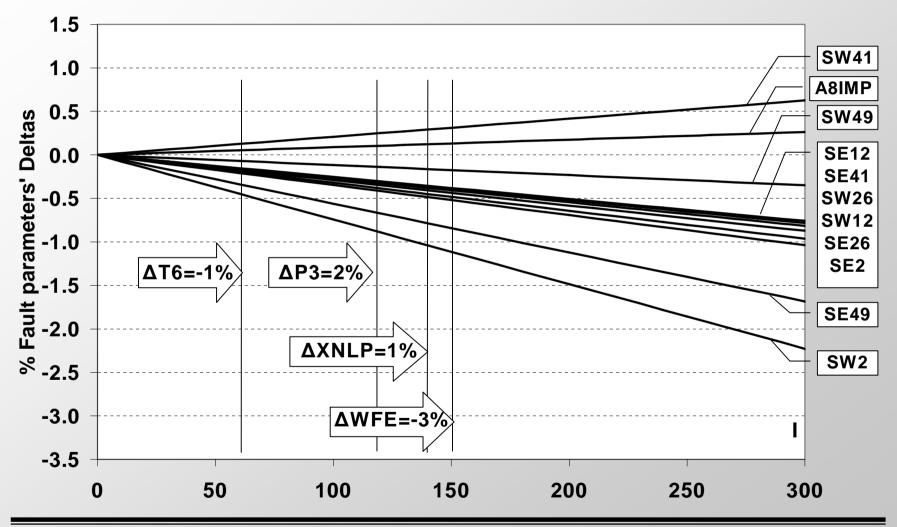
How the diagnostic ability is affected in a deteriorated engine?

The general trend is that ±1% biases are detectable for deterioration levels of up to ±0.5% fault parameters deviation

Sensor fault detection in a deteriorating engine



Sensor fault detection in a deteriorating engine



Conclusions - Results

Flexible and easy to built network

Wide range of effective diagnosis

Cases of Multiple sensor faults handled efficiently

 Robustness in the presence of component faults or deterioration

SETTING UP OF A PROBABILISTIC NEURAL NETWORK FOR SENSOR FAULT DETECTION INCLUDING OPERATION WITH COMPONENT FAULTS

C. Romessis Research Assistant K. Mathioudakis Associate Professor

Laboratory of Thermal Turbomachines National Technical University of Athens

