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Definition of the Diagnostic Problem

Determine If the readings from a number of instruments are correct or not
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High-by-Pass ratio, partially mixed, turbofan engine used as a test case
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§ Probabilistic Neural Network Architecture
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Turbofan Engine Modeling

@Quantities defining the operating Conditions:

§ Ambient Pressure S8Fuel consumption
SEngine Inlet Conditions (pressure, temperature)

JFault Parameters:

§Flow factors along the engine
§Efficiency factors along the engine ‘ EPM

SExhaust area

@ Measured quantities:

§ Shafts’ speed (low and high pressure)

§ Pressures and temperatures along the engine
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m ~ 11,000 nodes
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Each node: A Noise-free pattern produced by simulation
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No fault
probability probability that sensor is faulty

Example
5.30% | 2.20% | 2.38% | 68.30% | 3.65% | 4.56% | 4.30% | L158% | 3.60% | 290% | 123%

1

Fuel flow reading is faulty
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Aspects Examined to Assess Diagnostic Potential

SEffect of Noise

§Diagnosis at different Operating Conditions

§ Minimum detectable sensor biases

§ Multiple Sensor Faults detection

§ Simultaneous presence of Component Faults

§ Drifting Deterioration of Fault Parameters
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Aspects Examined to Assess Diagnostic Potential

Have been considered for:

A. Patternsfor training the network

B. Patternsfor testing the network
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Setting Up Of A Probabilistic Neural Network For Sensor Fault
Detection Including Operation With Component Faults

8§ Definition of the diagnostic problem
8§ Probabilistic Neural Network Architecture
§ PNN diagnostic ability

o Effect of noise level and operating conditions
o0 Minimum detectable sensor biases

0 Multiple sensor faults

0 Sensor fault detection in afaulty engine

0 Sensor fault detection in adeteriorating engine
§ Summary - Conclusions
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Examples of Test Patterns

(@) .
0 _ __ | Healthy engine,
Healthy sensors
(b) _
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s
v “ ' Healthy eng
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_2 (d) i
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PNN behavior in the presence of Noise

How the diagnostic ability is affected by the presence of noise?

Noise ‘blurs thediagnosis

A simplefiltering procedure ‘narrows theregion of
Ineffective diagnosis
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Noisy Data

Filtered Data

| @ |Not Diagnosed
| |Diagnosed
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Diagnosis at different Operating Conditions

How the diagnostic ability is affected
at different operating conditions?

Diagnostic ability unaffected for
‘neighboring’ operating conditions
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Trained OP
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Minimum detectable sensor biases

Which arethe minimum sensor biases
that can be detected?

Biases greater than 0.4% - 0.8%
are detected for all sensors

Bias Levelsusually represent 2-4 timesthe considered
noise levels
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Multiple Sensor Faults detection

How, possibly, multiple sensor faults can be detected?

Faultsin up tothreedifferent sensorsare
detected efficiently

Sensor s of measurementsfor condition monitoring
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Multiple sensor faults: Diagnostic procedure

I nitial Pattern . .
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Sample result

Success rate for Multiple sensor faults
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Simultaneous presence of Component Faults

How the diagnostic ability is affected
at the ssmultaneous presence of Component Faults ?

Detectable biases are larger

Sensor Biaseslarger than £1% are detectable for usual
component faults
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Sensor fault detection in a faulty engine

& Non Detectable O Detectable

% ASW41
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Drifting Deterioration of Fault Parameters

How the diagnostic ability is affected
In adeteriorated engine?

Thegeneral trend isthat £1% biases ar e detectable for
deterioration levels of up to £0.5% fault parameters
deviation
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Conclusions - Results

*Flexible and easy to built network
*\Wide range of effective diagnosis
eCases of Multiple sensor faults handled efficiently

Robustness in the presence of
component faults or deterioration
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