

A PARAMETRIC INVESTIGATION OF THE DIAGNOSTIC ABILITY OF PROBABILISTIC NEURAL NETWORKS ON TURBOFAN ENGINES

C. Romessis Research Assistant A. Stamatis Research associate

K. Mathioudakis Assistant Professor

Laboratory of Thermal Turbomachines National Technical University of Athens

A PARAMETRIC INVESTIGATION OF THE DIAGNOSTIC ABILITY OF PROBABILISTIC NEURAL NETWORKS ON TURBOFAN ENGINES

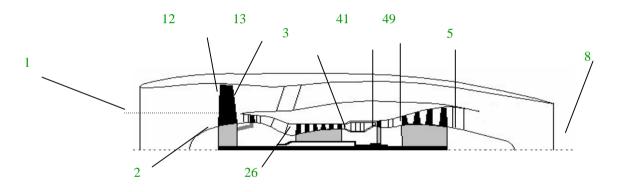
§ Formulation of the diagnostic problem

- **§** Features of Probabilistic Neural Networks
- **§** Study of factors affecting diagnostic performance of PNN o Effect of Training Set
 - o Effect of Measurements' noise
 - o Effect of the severity of a fault
 - o Effect of the operating conditions
 - o Effect of the selected diagnostic parameters

§ Summary - Conclusions

Formulation Of The Diagnostic Problem (I)

<u>OBJECTIVE</u>: PNN to diagnose component faults of High-by-Pass ratio, partially mixed, TURBOFAN engine



Layout of a turbofan engine and station numbering for positions of interest.

Formulation Of The Diagnostic Problem (II)

ØInformation Provided

§Quantities defining operating Condition (4)

§Ambient Conditions

§Flight Speed

§Set Point Variable (Fuel flow rate)

§Quantities for Deducing Engine Condition (7)

§Shaft speeds

§Pressure, Temperatures

ØInformation Required

§Condition of individual engine components

§Kind, Location, Severity (magnitude) of faults

PNN Generation

(I) Architecture

• Input Layer:

Each node represents a measured quantity (Inputs :ΔY=[(Y-Yref)/ Yref] 100%)

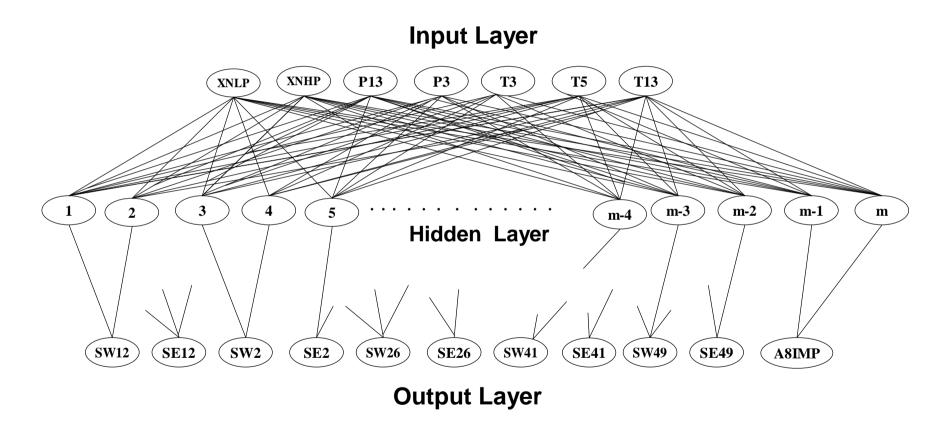
Hidden Layer:

Each node represents a training pattern (a-priori given information)

Output Layer:

Each node represents a fault parameter (probability values derived by NN)

Structure of a Probabilistic Neural Network



PNN Generation

(II) A priori information

<u>Training Patterns</u>

•Generated by Engine Performance model

•Reference information ("healthy" - Y_{ref})

•Faulty Engine Information (Y)

Turbofan Engine Modeling

ØQuantities defining the operating Conditions (4):

§ Ambient Pressure §Fuel consumption §Engine Inlet Conditions (pressure, temperature)

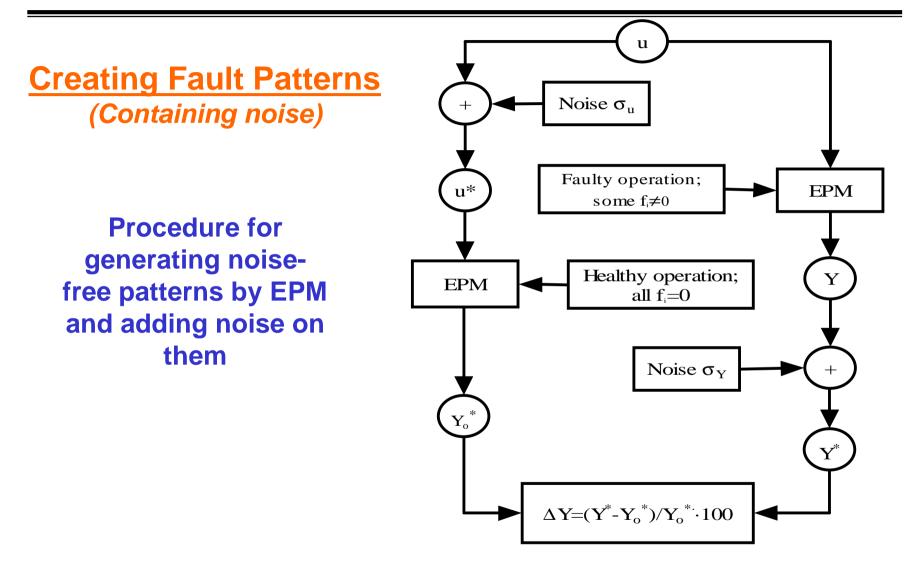
ØFault Parameters (11): § Flow factors of positions of interest: $SW_i = \frac{W_i \cdot \sqrt{T_i}}{p_i} / \left(\frac{W_i \cdot \sqrt{T_i}}{p_i}\right)_{ref}$

§Efficiency factors of positions of interest: $SE_i = \frac{h_i}{(h_i)_{ref}}$

§Exhaust area (numbered station 8)

- Ø Measured quantities (7):
- § Shafts' speed (low and high pressure)
- **§** Pressures and temperatures at stations along the engine

A Parametric Investigation of The Diagnostic Ability Of Probabilistic Neural Networks On Turbofan Engines



Generating the Training – Testing patterns

Patterns (generated by EPM)

Deltas of measurements for a specific set of deltas of the fault parameters

Considered faults

• 11 <u>Single faults</u>: Delta of 1 fault parameter deviates within a range of +/- 3%

• 5 <u>Combined faults</u>: Deltas of 2 fault parameters, of the same module,deviate.

* Delta of a value Y: ΔY=[(Y-Yref)/ Yref] 100%

Noise Situations Considered

(reproduce realistically the data collected from an actual engine)

5 noise levels considered

noise level	noise in u	noise in y
1	0	σy/2
2	0	σу
3	0	3σy/2
4	0	2σу
5	σu	σу

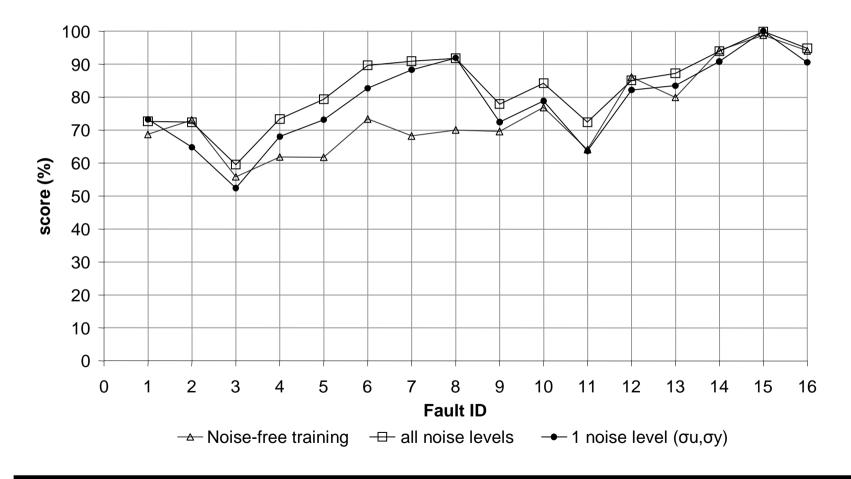
• σ u: noise due to Operating Condition uncertainty

•σy: noise due to sensor inaccuracies

Considered Probabilistic Neural Networks

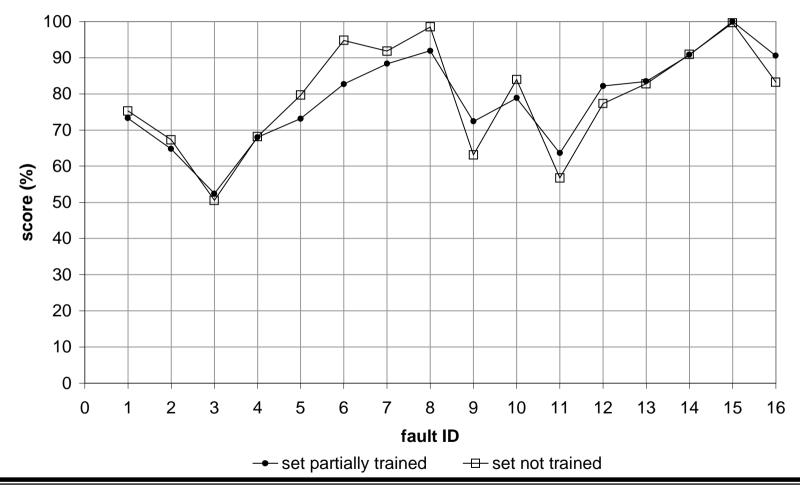
		Training patterns			
				No. of	
	No. of	Operating	Noise level	training	No. of
ID	input nodes	point	included	patterns	output nodes
1	7	cruise	No noise	112	11
			1st,2nd,		
2	7	cruise	3rd, 5th	2240	11
3	7	cruise	5th level	1120	11
			1st,2nd,		
4	7	take-off	3rd, 5th	2240	11
5	7	take-off	5th level	1120	11
6	7	cruise	5th level	1120	5
		cruise &			
7	14	take-off	5th level	2240	11

Effect of noise level on the training patterns



Performance of a network tested on

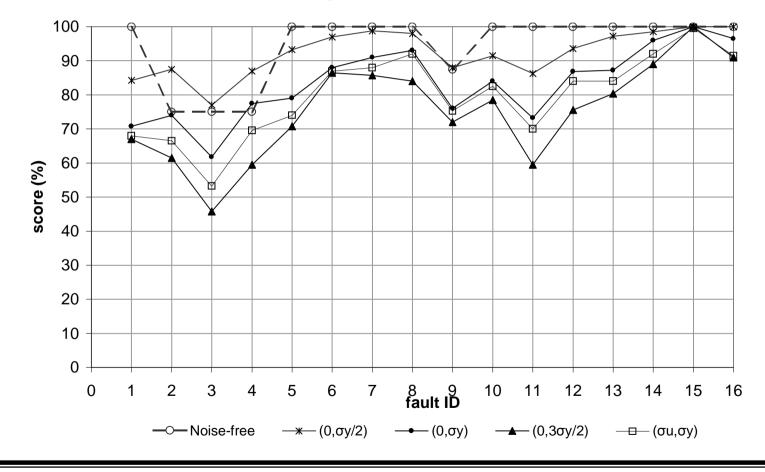
patterns partially used for training and on non-training patterns



A Parametric Investigation of The Diagnostic Ability Of Probabilistic Neural Networks On Turbofan Engines

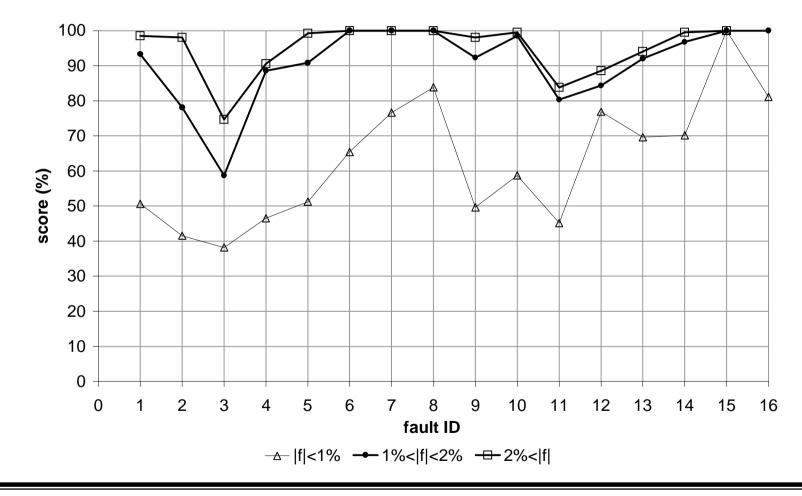
Effect of noise level in the patterns presented to the network.

Network trained using data from all noise situations.

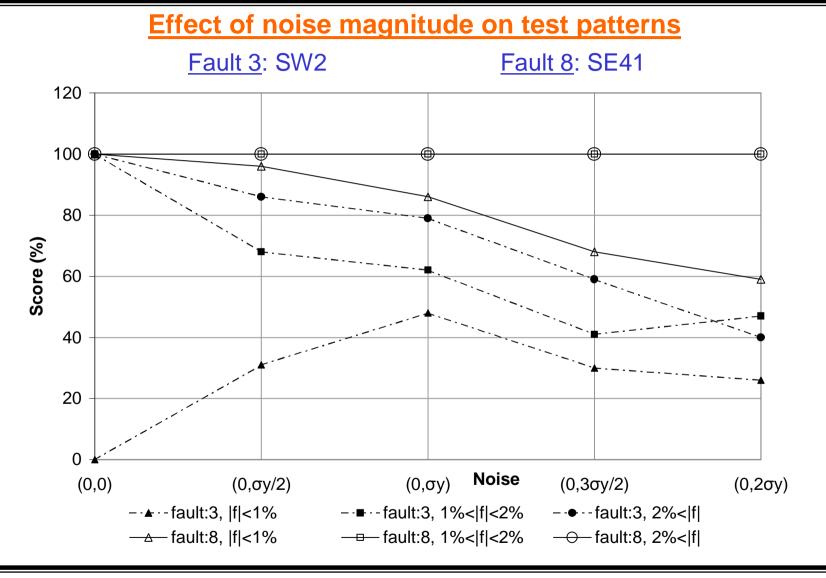


A Parametric Investigation of The Diagnostic Ability Of Probabilistic Neural Networks On Turbofan Engines

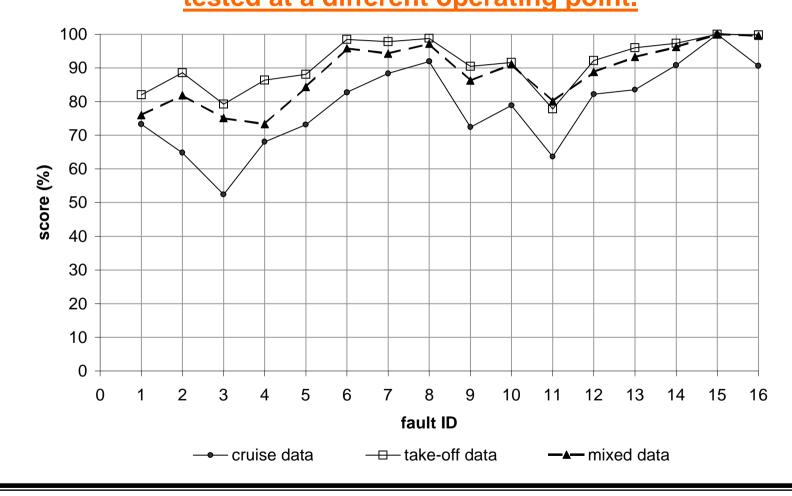
Effect of magnitude of fault on the diagnostic performance of PNN.



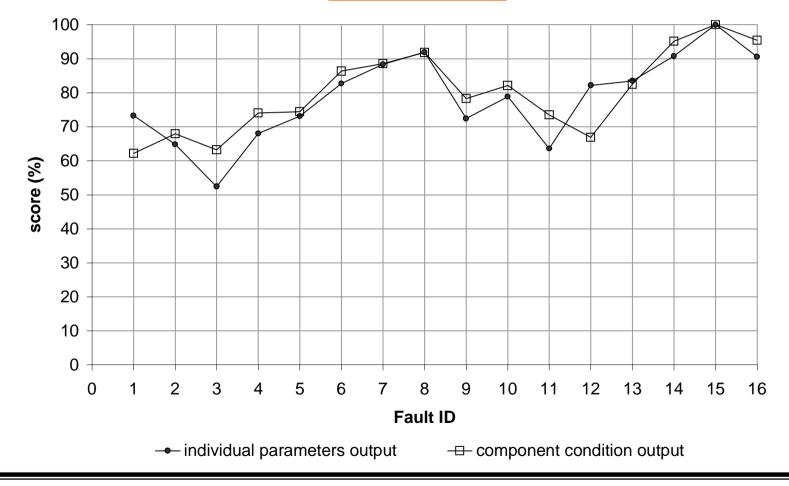
A Parametric Investigation of The Diagnostic Ability Of Probabilistic Neural Networks On Turbofan Engines



Diagnostic performance of three networks, each one trained and tested at a different operating point.



Diagnostic performance of two networks with different output configuration.



A Parametric Investigation of The Diagnostic Ability Of Probabilistic Neural Networks On Turbofan Engines

Conclusions

•The influence of noise is important. Training with noisy data improves the performance.

•When a network is used, the performance is better for less noise in the data. Filtering procedure of measurements before they are fed to such a network may thus be beneficial.

•Possibility of correct detection of a fault is better for more severe faults, namely when the magnitude of deviation is bigger.

•It is safer to make diagnosis based on observations at higher power settings (e.g. take-off versus cruise conditions).

A Parametric Investigation of The Diagnostic Ability Of Probabilistic Neural Networks On Turbofan Engines