

C. Romessis Research Assistant K. Mathioudakis Associate Professor

Laboratory of Thermal Turbomachines National Technical University of Athens

- Definition of the diagnostic problem
- Probabilistic Neural Network Architecture
- PNN sensor validation
 - o Sensor fault detection in a faulty engine
 - o Minimum detectable sensor biases
 - o Sensor fault detection in a deteriorating engine
 - o Sensor validation during a flight
 - o Multiple sensor faults
- Summary Conclusions

Definition of the diagnostic problem

- Probabilistic Neural Network Architecture
- PNN sensor validation
 - o Sensor fault detection in a faulty engine
 - o Minimum detectable sensor biases
 - o Sensor fault detection in a deteriorating engine
 - o Sensor validation during a flight
 - o Multiple sensor faults
- Summary Conclusions

Definition of the Diagnostic Problem

Determine the bias of the readings from a number of instruments

High-by-Pass ratio, partially mixed, turbofan engine used as a test case

Definition of the diagnostic problem

- Probabilistic Neural Network Architecture
- PNN sensor validation
 - o Sensor fault detection in a faulty engine
 - o Minimum detectable sensor biases
 - o Sensor fault detection in a deteriorating engine
 - o Sensor validation during a flight
 - o Multiple sensor faults
- Summary Conclusions

Diagnosis with the Probabilistic Neural Network (PNN)

Structure of the PNN Input layer: Deltas of the measurements

Pattern Generation from Measurements

Turbofan Engine Modeling

- >Quantities defining the operating Conditions:
 - Ambient Pressure
 Engine Inlet Conditions (pressure, temperature)
- **Fault Parameters:**
 - Flow factors along the engine
 - Efficiency factors along the engine
 - Exhaust area
- Measured quantities:
 - Shafts' speed (low and high pressure)
 - Pressures and temperatures along the engine

Each node: A Noise-free pattern produced by simulation

Structure of the PNN Output layer: Considered classes

Materializing the Network

Aspects Examined to Assess Diagnostic Potential

Simultaneous presence of <u>Component Faults</u>

•Minimum detectable sensor biases

Drifting Deterioration of Fault Parameters

Diagnosis at different Operating Conditions

Multiple Sensor Faults detection

Aspects Examined to Assess Diagnostic Potential

Have been considered for:

A. Patterns for training the network

B. Patterns for testing the network

Setting Up Of A Probabilistic Neural Network For Sensor Fault Detection Including Operation With Component Faults

Definition of the diagnostic problem

Probabilistic Neural Network Architecture

PNN sensor validation

o Sensor fault detection in a faulty engine

- o Minimum detectable sensor biases
- o Sensor fault detection in a deteriorating engine
- o Sensor validation during a flight
- o Multiple sensor faults
- Summary Conclusions

Examples of Test Patterns

Simultaneous presence of Component Faults

How the diagnostic ability is affected at the simultaneous presence of Component Faults ?

Sensor Biases are detectable in almost all cases of faulty operation of the engine (deviation of 1%-2% of the fault parameters)

Sensor fault detection in a faulty engine

Minimum detectable sensor biases

Which are the minimum sensor biases that can be detected?

Biases greater than 0.4% - 1.0% are almost always detected for all sensors

Bias Levels usually represent 2-6 times the considered noise levels

Jet Engine Sensor Validation with Probabilistic Neural Networks

Minimum detectable sensor biases

Drifting Deterioration of Fault Parameters

How the diagnostic ability is affected in a deteriorated engine?

The general trend is that almost all biases are detectable for deterioration levels of up to ±0.5% fault parameters deviation

Diagnosis at different Operating Conditions

How the diagnostic ability is affected at different operating conditions?

Diagnostic ability unaffected for a region of operating conditions

A whole flight envelope can be covered by two PNNs

Effect of Operating Conditions

Representation of a flight envelope

Effect of Operating Conditions

Effect of Operating Conditions

Multiple Sensor Faults detection

How, possibly, multiple sensor faults can be detected?

Faults in up to two different sensors are detected efficiently

Multiple sensor faults

Multiple sensor faults: Diagnostic procedure

Success rates for Multiple Sensor Faults

Conclusions - Results

- •Flexible and easy to built network
- •Wide range of effective diagnosis
- Satisfactory Minimum Detectable Biases
- Cases of Multiple sensor faults handled efficiently
- •Robustness in the presence of component faults or deterioration